

Location Specification:

If there is an object, what is the object's location?

- $\mathbf{y} = (b_x, b_y, b_w, b_h) = (0.8, 0.9, 3.0, 1.8)$
- Center coordinates are specified in coordinates relative to this cell
 - Top left corner of cell is (0, 0), lower right corner of cell is (1, 1)
 - Maybe center (pink point) is at (0.8, 0.9) relative to cell
- Box width and height are multiples of anchor box width and height
 - Maybe width and height are (3.0, 1.8) times that of the anchor box

Location Specification:

If there is an object, what is the object's location?

- $\mathbf{y} = (b_x, b_y, b_w, b_h) = (0.8, 0.9, 3.0, 1.8)$
- Center coordinates are specified in coordinates relative to this cell
 - Top left corner of cell is (0, 0), lower right corner of cell is (1, 1)
 - Maybe center (pink point) is at (0.8, 0.9) relative to cell
- Box width and height are multiples of anchor box width and height
 - Maybe width and height are (3.0, 1.8) times that of the anchor box

Parameter Constraints:

The parameters (b_x, b_y, b_w, b_h) must satisfy the following constraints:

- Center point must fall within cell
 - $0 < b_x < 1$ $0 < b_y < 1$
- Width and height must be positive

•
$$0 < b_w$$
 $0 < b_h$

Location Specification:

If there is an object, what is the object's location?

- $\mathbf{y} = (b_x, b_y, b_w, b_h) = (0.8, 0.9, 3.0, 1.8)$
- Center coordinates are specified in coordinates relative to this cell
 - Top left corner of cell is (0, 0), lower right corner of cell is (1, 1)
 - Maybe center (pink point) is at (0.8, 0.9) relative to cell
- Box width and height are multiples of anchor box width and height
 - Maybe width and height are (3.0, 1.8) times that of the anchor box

Parameter Constraints:

The parameters (b_x, b_y, b_y, b_h) must satisfy the following constraints:

- Center point must fall within cell
 - $0 < b_x < 1$ $0 < b_y < 1$
- Width and height must be positive

• $0 < b_w$ $0 < b_h$

Enforce Constraints with Transformations:

- Neural network outputs (a_x, a_y, a_w, a_h)
- Set $b_x = \text{sigmoid}(a_x)$ $b_y = \text{sigmoid}(a_y)$
- Set $b_w = \exp(a_w)$ $b_h = \exp(a_h)$

Location Specification:

If there is an object, what is the object's location?

- $\mathbf{y} = (b_x, b_y, b_w, b_h) = (0.8, 0.9, 3.0, 1.8)$
- Center coordinates are specified in coordinates relative to this cell
 - Top left corner of cell is (0, 0), lower right corner of cell is (1, 1)
 - Maybe center (pink point) is at (0.8, 0.9) relative to cell
- Box width and height are multiples of anchor box width and height
 - Maybe width and height are (3.0, 1.8) times that of the anchor box

Parameter Constraints:

The parameters (b_x, b_y, b_y, b_h) must satisfy the following constraints:

- Center point must fall within cell
 - $0 < b_x < 1$ $0 < b_y < 1$
- Width and height must be positive

• $0 < b_w$ $0 < b_h$

Enforce Constraints with Transformations:

- Neural network outputs (a_x, a_y, a_w, a_h)
- Set $b_x = \text{sigmoid}(a_x)$ $b_y = \text{sigmoid}(a_y)$
- Set $b_w = \exp(a_w)$ $b_h = \exp(a_h)$

Loss Function Doesn't Change:

• Still use mean squared error loss based on (b_x, b_y, b_w, b_h)