Set Up for Network Outputs

Our network must output predictions for all cells and anchor boxes! Combined, for this image y is an array of shape (4, 4, 3 * (1 + 4 + K))

Outputs for all 3 anchor boxes 0 in second grid cell of top row: ____ _ _ : 1 0.8 0.9 0.8 1.7 y[0, 1, :] = 0 0 : 0 0 _ _ _

Set Up for Network Outputs

Note:

- Although the image is divided into 16 cells, we run prediction for the model once ("you only look once").
- The output of a single pass through the network is an array of shape (4, 4, 3 * (1 + 4 + K)) with predictions for all cells and anchor boxes.

Our network must output predictions for all cells and anchor boxes! Combined, for this image y is an array of shape (4, 4, 3 * (1 + 4 + K))

Outputs for all 3 anchor boxes in second grid cell of top row:

YOLO Network Architecture

- Each YOLO paper used a different network architecture (later papers used bigger models).
- Here is the architecture from the first YOLO paper, which used 7x7 grid cells:

Figure from Redmon et al., "You Only Look Once: Unified, Real-Time Object Detection." (2016)

Output Layer Shapes Example

- Consider a network with: (1) a 3 × 3 convolutional filter; (2) 2 × 2 max pooling with stride 2;
 (3) a 3 × 3 convolutional filter; (4) 2 × 2 max pooling with stride 2
- Recall: if input is $n \times n$, output from 3×3 filter is $(n-2) \times (n-2)$
- If input is $n \times n$, output from 2×2 max pooling is $(n/2) \times (n/2)$
- Suppose input is 34×34

- Effective Receptive Field: How many pixels of input unit are used to calculate a given activation in a later layer?
 - For this example, effective receptive field is 10×10
 - Note: If we had 7 cells, each would be about 5×5 in the input image
 - We use information from outside of a given grid cell to inform predictions for that grid cell.
 - For a deeper network, effective receptive field is even larger

- Effective Receptive Field: How many pixels of input unit are used to calculate a given activation in a later layer?
 - For this example, effective receptive field is 10×10
 - Note: If we had 7 cells, each would be about 5×5 in the input image
 - We use information from outside of a given grid cell to inform predictions for that grid cell.
 - For a deeper network, effective receptive field is even larger
- There is a lot of overlap in effective receptive fields for neighboring cells

- Effective Receptive Field: How many pixels of input unit are used to calculate a given activation in a later layer?
 - For this example, effective receptive field is 10×10
 - Note: If we had 7 cells, each would be about 5×5 in the input image
 - We use information from outside of a given grid cell to inform predictions for that grid cell.
 - For a deeper network, effective receptive field is even larger
- There is a lot of overlap in effective receptive fields for neighboring cells
 - An advantage to using convolutions is that the same computations are re-used!

