Misc. Details about RNNs

Mar. 4, 2020

Backpropagation

• In this figure, connections between layers should be illustrated as densely connected but the figure was too busy.

Forward Propagation: Start with $x^{(i)<1>}$ and $a^{(i)<0>[1]}$, work forwards in time $a^{(i)<t>[1]} = g^{[1]}(z^{(i)<t>[1]})$

 $z^{(i) < t > [1]} = b^{[1]} + W^{[1]}_{a} a^{(i) < t-1 > [1]} + W^{[1]}_{x} x^{(i) < t-1 > t}$

Backward Propagation: Start with $J^{(i) < T_x^{(i)} >}(b, w)$, work backwards in time For time t, $J^{(i)}(b, w) = \sum_{t=1}^{T_x^{(i)}} J^{(i) < t>}(b, w)$ depends on $a^{(i) < t>[1]}$ through $a^{(i) < t>[2]}$ and $a^{(i) < t+1>[1]}$ same time, next layer up same layer Therefore, $\frac{\partial J^{(i)}}{\partial a^{(i) < t>[1]}} = \frac{\partial J^{(i)}}{\partial a^{(i) < t>[2]}} \frac{\partial a^{(i) < t>[2]}}{\partial a^{(i) < t>[1]}} + \frac{\partial J^{(i)}}{\partial a^{(i) < t+1>[1]}} \frac{\partial a^{(i) < t+1>[1]}}{\partial a^{(i) < t+1>[1]}}$ $J^{(i)}(b, w)$ depends on $W_x^{(1]}$ through $a^{(i) < t>[1]}$, ..., $a^{(i) < T_x^{(i)}>[1]}$ Therefore, $\frac{\partial J^{(i)}}{\partial W_x^{(1)}} = \sum_{t=1}^{T_x^{(1)}} \frac{\partial J^{(i)}}{\partial a^{(i) < t>[1]}} \frac{\partial a^{(i) < t>[1]}}{\partial W_x^{(1]}}$ (a similar idea holds for $b^{(1)}$ and $W_a^{(1]}$)

- Note that vanishing/exploding gradients are going to be a problem:
 - We get a term in our gradient computation for every time point (e.g., for every word in our sentence).

Dependence formulation

- At time t, predictions are from $P(Y^{(i) < t>} = y^{(i) < t>} | x^{(i) < 1>}, \dots, x^{(i) < t>})$
- Depends on observed inputs up through current time.
- We calculate the joint distribution for responses across all times as follows:

$$P(Y^{(i)<1>} = y^{(i)<1>}, \dots, Y^{(i)} = y^{(i)} | x^{(i)<1>}, \dots, x^{(i)})$$

= $P(Y^{(i)<1>} = y^{(i)<1>} | x^{(i)<1>}) \times P(Y^{(i)<2>} = y^{(i)<2>} | x^{(i)<1>}, x^{(i)<2>})$
 $\times \dots \times P(Y^{(i)} = y^{(i)} | x^{(i)<1>}, \dots, x^{(i)})$

- This decomposition requires an assumption that Y^{(i)<t>} is conditionally independent of Y^{(i)<1>},...,Y^{(i)<t-1>} given x^{(i)<1>},...,x<sup>(i)<T_y⁽ⁱ⁾></sub>.
 </sup>
 - Knowing the values of $Y^{(i)<1>}, \ldots, Y^{(i)<t-1>}$ wouldn't add any more information about $Y^{(i)<t>}$ than is already contained in $x^{(i)<1>}, \ldots, x^{(i)<T_y^{(i)}>}$.
- This seems restrictive, but isn't that bad.
 - We can always expand $x^{(i) < t>}$ to include the observed response at the previous time, $y^{(i) < t-1>}$, as a feature.

Multiple RNN Layers

- You can stack multiple RNN layers on top of each other.
- They could have different numbers of layers.

