
Feb_21

February 21, 2020

1 Goal

Our goal for today is to understand how we can do edge detection in grayscale images using
"convolutions" (Actually we are using cross-correlations, not convolutions - but the neural net-
work community uses the term convolution, so we’ll use that term too. Convolutions are like
backwards cross-correlations.):

1

2

2 Simplified setting: 1 dimensional input

Suppose we have the following very fake data:

[53]: x = np.concatenate(
(np.zeros((3,)), np.ones((3,)), np.zeros((3,))),
axis = 0

)
print("x = " + str(x))
plt.plot(x)

x = [0. 0. 0. 1. 1. 1. 0. 0. 0.]

[53]: [<matplotlib.lines.Line2D at 0x7f3b106be4a8>]

We would like to detect the edges between indices 2 and 3, and between indices 5 and 6.

3

x = [0. 0. 0. 1. 1. 1. 0. 0. 0.]

2.1 (a) How to do this with a convolutional filter.

2.1.1 i. Filter width f = 3: W = [1, 0, -1]

2.1.2 ii. Filter width f = 5: W = [1, 1, 0, -1, -1]

2.2 (b) Suppose we have an input of length n and a filter of length f . What is the
shape of the output?

4

2.3 (c) Suppose we pad the input by adding p 0’s on the left and p zeros on the right.

2.3.1 i. Example calculation with p = 1, f = 5

x = [0. 0. 0. 1. 1. 1. 0. 0. 0.]

2.3.2 ii. What is the length of the output in terms of n, p, and f ?

2.3.3 iii. What value of p should you use to get a “same” convolution where the length of the
output is the same as the length of the input?

5

2.4 (d) Suppose we use a stride of s (the starting point of each new filter evaluation
skips over s inputs).

2.4.1 i. Example calculation with p = 1, f = 3, s = 2

2.4.2 ii. What if our input was of length 8 instead of 9? (Suppose x = [0. 0. 0. 1. 1. 0. 0. 0.]; I
deleted a 1 in the middle.)

2.4.3 iii. What is the length of the output in terms of n, p, f , and s?

6

3 Two-dimensional input

Recall that a greyscale image is represented as a 2-dimensional array of pixel values. Let’s denote
the shape by (nH, nW) (for height and width, corresponding to rows and columns).

Let’s pretend that we have the following pixel values (these will be integers between 0 and 255,
inclusive):

X =



100 100 100 0 0 0
100 100 100 0 0 0
100 100 100 0 0 0
100 100 100 100 100 100
100 100 100 100 100 100
100 100 100 100 100 100


We use the following filter:

W =

1 0 −1
2 0 −2
1 0 −1



3.1 (a) Find the filter output if we use a padding of p = 1 and stride of s = 1.

3.2 (b) What does this filter do?

3.3 (c) What is the shape of the output from applying an f × f filter to an nH × nW
image using padding p and stride s?

7

4 Second Example with 2-dimensional input

Suppose

X =


100 100 100 0 0 0
100 100 100 0 0 0
100 100 100 0 0 0
0 0 0 100 100 100
0 0 0 100 100 100


We use the following filter:

W =

 1 1 1
0 0 0
−1 −1 −1



4.1 (b) What does this filter do?

4.2 (c) What would the output shape be if instead you used a padding of p = 1 and a
stride of s = 2?

8

5 Algorithm to compute

We will make some tweaks to this next week to allow for multiple observations (multiple images)
and color images with red, green, and blue channels.

Inputs:

• Array A of shape (nH, nW) to apply the filter to. (In examples above, we used X – this is what
we would use in the first layer of a convolutional network, later layers will use activations
A from previous layers)

• Filter of shape (f , f)
• Padding amount p
• Stride amount s

Outputs:

• Filtered inputs of shape
(⌊

nH+2p− f
s + 1

⌋
,
⌊

nW+2p− f
s + 1

⌋)
Algorithm:

• Pad image with p pixels of 0s on all sides.
• Create output array of shape

(⌊
nH+2p− f

s + 1
⌋

,
⌊

nW+2p− f
s + 1

⌋)
• For i = 0, . . . ,

⌊
nH+2p− f

s + 1
⌋

– For j = 0, . . . ,
⌊

nW+2p− f
s + 1

⌋
* start_row = i * s, end_row = start_row + f
* start_col = j * s, end_col = start_col + f
* output[i, j] = np.sum(W * A[start_row:end_row, start_col:end_col])

9

	Goal
	Simplified setting: 1 dimensional input
	(a) How to do this with a convolutional filter.
	i. Filter width f = 3: W = [1, 0, -1]
	ii. Filter width f = 5: W = [1, 1, 0, -1, -1]

	(b) Suppose we have an input of length n and a filter of length f. What is the shape of the output?
	(c) Suppose we pad the input by adding p 0's on the left and p zeros on the right.
	i. Example calculation with p = 1, f = 5
	ii. What is the length of the output in terms of n, p, and f?
	iii. What value of p should you use to get a ``same'' convolution where the length of the output is the same as the length of the input?

	(d) Suppose we use a stride of s (the starting point of each new filter evaluation skips over s inputs).
	i. Example calculation with p = 1, f = 3, s = 2
	ii. What if our input was of length 8 instead of 9? (Suppose x = [0. 0. 0. 1. 1. 0. 0. 0.]; I deleted a 1 in the middle.)
	iii. What is the length of the output in terms of n, p, f, and s?

	Two-dimensional input
	(a) Find the filter output if we use a padding of p = 1 and stride of s = 1.
	(b) What does this filter do?
	(c) What is the shape of the output from applying an f \times f filter to an n_H \times n_W image using padding p and stride s?

	Second Example with 2-dimensional input
	(b) What does this filter do?
	(c) What would the output shape be if instead you used a padding of p = 1 and a stride of s = 2?

	Algorithm to compute

