Loss and Activation Functions and Their Derivatives

Feb. 7, 2020

Loss and Activation Functions for Output Layer

In the last layer of a neural network, for our three common settings (regression, binary classification, and multi-class classification):

- a specific loss function is always used
- a corresponding activation function is always used for the last layer (L)

Setting	Loss	Activation	Vectorized Derivative (up to constant of proportionality)
Regression	Mean Squared Error	Linear	
$y^{(i)}$ is a number	$J(b,w) = \frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} - a_1^{(i)[L]} \right)^2$	$a_1^{(i)[L]} = z_1^{(i)[L]}$	$\frac{dJ(b,w)}{dz^{[L]}} = \left[(a_1^{(1)[L]} - y^{(1)[L]}) \cdots (a_1^{(m)[L]} - y^{(m)[L]}) \right]$
Binary Classification	Binary Cross-Entropy	Sigmoid	
$y^{(i)}$ is 0 or 1	$J(b,w) = \sum_{i=1}^{m} y^{(i)} \log \left(a_1^{(i)[L]} \right) + (1 - y^{(i)}) \log \left(1 - a_1^{(i)[L]} \right)$	$a_1^{(i)[L]} = \frac{\exp(z_1^{(i)[L]})}{1 + \exp(z_1^{(i)[L]})}$	$\frac{dJ(b,w)}{dz^{[L]}} = \left[(a_1^{(1)[L]} - y^{(1)[L]}) \cdots (a_1^{(m)[L]} - y^{(m)[L]}) \right]$
Multiclass Classification	Categorical Cross-Entropy	Softmax	
$y^{(i)} = 2 \text{ or } y^{(i)} = \begin{bmatrix} 0\\1\\\vdots\\0 \end{bmatrix}$	$J(b,w) = \sum_{i=1}^{m} \log \left(a_{y^{(i)}}^{(i)[L]} \right) \text{ or }$ $J(b,w) = \sum_{i=1}^{m} \sum_{j=1}^{K} y_{j}^{(i)} \log \left(a_{j}^{(i)[L]} \right)$	$\begin{bmatrix} a_1^{(i)[L]} \\ a_2^{(i)[L]} \\ \vdots \\ a_K^{(i)[L]} \end{bmatrix} = \begin{bmatrix} \frac{\exp(z_1^{(i)[L]})}{\sum_{j=1}^{K} \exp(z_j^{(i)[L]})} \\ \frac{\exp(z_2^{(i)[L]})}{\sum_{j=1}^{K} \exp(z_j^{(i)[L]})} \\ \vdots \\ \frac{\exp(z_K^{(i)[L]})}{\sum_{j=1}^{K} \exp(z_j^{(i)[L]})} \end{bmatrix}$	$\frac{dJ(b,w)}{dz^{[L]}} = \begin{bmatrix} (a_1^{(1)[L]} - y_1^{(1)[L]}) & \cdots & (a_1^{(m)[L]} - y_1^{(m)[L]}) \\ (a_2^{(1)[L]} - y_2^{(1)[L]}) & \cdots & (a_2^{(m)[L]} - y_2^{(m)[L]}) \\ \vdots & \ddots & \vdots \\ (a_K^{(1)[L]} - y_K^{(1)[L]}) & \cdots & (a_K^{(m)[L]} - y_K^{(m)[L]}) \end{bmatrix}$

Activation Functions for Hidden Layers

- A rectified linear unit is the recommended default activation function for fully connected (dense) layers.
- *tanh* is another option that was more common in the past. It can work ok.
- Sigmoid was also used in the past but is definitely not recommended.
- Lots of research about other options.

In the notation below:

• n_l is the number of units in layer l

•
$$\mathbb{I}_{[0,\infty)}(z) = \begin{cases} 1 \text{ if } z \in [0,\infty] \\ 0 \text{ otherwise} \end{cases}$$

Activation	Vectorized Derivative (up to constant of proportionality)			
Rectified Linear (ReLU)				
$\begin{bmatrix} a_{1}^{(i)[l]} \end{bmatrix} \begin{bmatrix} \max\left(0, z_{1}^{(i)[l]}\right) \end{bmatrix}$	$\frac{da^{[l]}}{dz^{[l]}} = \begin{bmatrix} \mathbb{I}_{[0,\infty)} \begin{pmatrix} z_1^{(1)[l]} \end{pmatrix} & \cdots & \mathbb{I}_{[0,\infty)} \begin{pmatrix} z_1^{(m)[l]} \end{pmatrix} \\ \mathbb{I}_{[0,\infty)} \begin{pmatrix} z_2^{(1)[l]} \end{pmatrix} & \cdots & \mathbb{I}_{[0,\infty)} \begin{pmatrix} z_2^{(m)[l]} \end{pmatrix} \\ \vdots & \ddots & \vdots \\ \mathbb{I}_{[0,\infty)} \begin{pmatrix} z_{n_l}^{(1)[l]} \end{pmatrix} & \cdots & \mathbb{I}_{[0,\infty)} \begin{pmatrix} z_{n_l}^{(m)[l]} \end{pmatrix} \end{bmatrix}$			
$\begin{vmatrix} a_2^{(i)[l]} \\ \end{vmatrix} = \begin{vmatrix} \max\left(0, z_2^{(i)[l]}\right) \end{vmatrix}$	$\frac{da_{m}^{[l]}}{da_{m}^{[l]}} = \begin{bmatrix} \mathbb{I}_{[0,\infty)} \left(z_{2}^{(1)[l]} \right) & \cdots & \mathbb{I}_{[0,\infty)} \left(z_{2}^{(m)[l]} \right) \end{bmatrix}$			
	$dz^{[t]}$			
$ \begin{bmatrix} a_{n_l}^{(i)[l]} \end{bmatrix} \left[\max\left(0, z_{n_l}^{(i)[l]}\right) \right] $	$\left[\mathbb{I}_{[0,\infty)}\left(z_{n_{l}}^{(1)[l]}\right) \cdots \mathbb{I}_{[0,\infty)}\left(z_{n_{l}}^{(m)[l]}\right)\right]$			
tanh				
$\begin{bmatrix} a_1^{(i)[l]} \end{bmatrix} \begin{bmatrix} tanh\left(z_1^{(i)[l]}\right) \end{bmatrix}$	$\left[1-\left(a_{1}^{(1)[l]} ight)^{2}\ \cdots\ 1-\left(a_{1}^{(m)[l]} ight)^{2} ight]$			
$\begin{vmatrix} a_2^{[i)[l]} \\ a_2 \end{vmatrix} = \begin{vmatrix} tanh\left(z_2^{(i)[l]}\right) \end{vmatrix}$	$\frac{da^{[l]}}{da^{[l]}} = \left[1 - \left(a_2^{(1)[l]} \right)^2 \cdots 1 - \left(a_2^{(m)[l]} \right)^2 \right]$			
	$dz^{[t]}$			
$ \begin{bmatrix} a_{n_l}^{(i)[l]} \end{bmatrix} \left\lfloor tanh\left(z_{n_l}^{(i)[l]}\right) \right\rfloor $	$\frac{da^{[l]}}{dz^{[l]}} = \begin{bmatrix} 1 - \left(a_1^{(1)[l]}\right)^2 & \cdots & 1 - \left(a_1^{(m)[l]}\right)^2 \\ 1 - \left(a_2^{(1)[l]}\right)^2 & \cdots & 1 - \left(a_2^{(m)[l]}\right)^2 \\ \vdots & \ddots & \vdots \\ 1 - \left(a_{n_l}^{(1)[l]}\right)^2 & \cdots & 1 - \left(a_{n_l}^{(m)[l]}\right)^2 \end{bmatrix}$			