
Loss and Activation Functions and Their Derivatives
Feb. 7, 2020

Loss and Activation Functions for Output Layer

In the last layer of a neural network, for our three common settings (regression, binary classification, and multi-class classification):

• a specific loss function is always used
• a corresponding activation function is always used for the last layer (L)

Vectorized Derivative
Setting Loss Activation (up to constant of proportionality)

Regression Mean Squared Error Linear
y(i) is a number J(b, w) = 1

m

∑m
i=1

(
y(i) − a

(i)[L]
1

)2
a

(i)[L]
1 = z

(i)[L]
1

dJ(b,w)
dz[L] =

[
(a(1)[L]

1 − y(1)[L]) · · · (a(m)[L]
1 − y(m)[L])

]
Binary Classification Binary Cross-Entropy Sigmoid

y(i) is 0 or 1
J(b, w) =

∑m
i=1 y(i) log

(
a

(i)[L]
1

)
+(1− y(i)) log

(
1− a

(i)[L]
1

) a
(i)[L]
1 = exp(z

(i)[L]
1 )

1+exp(z
(i)[L]
1 )

dJ(b,w)
dz[L] =

[
(a(1)[L]

1 − y(1)[L]) · · · (a(m)[L]
1 − y(m)[L])

]
Multiclass Classification Categorical Cross-Entropy Softmax

y(i) = 2 or y(i) =


0
1
...
0

 J(b, w) =
∑m

i=1 log
(

a
(i)[L]
y(i)

)
or

J(b, w) =
∑m

i=1
∑K

j=1 y
(i)
j log

(
a

(i)[L]
j

)


a
(i)[L]
1

a
(i)[L]
2
...

a
(i)[L]
K

 =



exp(z
(i)[L]
1 )∑K

j=1
exp(z

(i)[L]
j

)

exp(z
(i)[L]
2 )∑K

j=1
exp(z

(i)[L]
j

)
...

exp(z
(i)[L]
K

)∑K

j=1
exp(z

(i)[L]
j

)


dJ(b,w)

dz[L] =


(a(1)[L]

1 − y
(1)[L]
1 ) · · · (a(m)[L]

1 − y
(m)[L]
1 )

(a(1)[L]
2 − y

(1)[L]
2 ) · · · (a(m)[L]

2 − y
(m)[L]
2 )

...
. . .

...
(a(1)[L]

K − y
(1)[L]
K ) · · · (a(m)[L]

K − y
(m)[L]
K )



1



Activation Functions for Hidden Layers

• A rectified linear unit is the recommended default activation function for fully connected (dense) layers.
• tanh is another option that was more common in the past. It can work ok.
• Sigmoid was also used in the past but is definitely not recommended.
• Lots of research about other options.

In the notation below:

• nl is the number of units in layer l

• I[0,∞) (z) =
{

1 if z ∈ [0.∞]
0 otherwise

Vectorized Derivative
Activation (up to constant of proportionality)

Rectified Linear (ReLU)
a

(i)[l]
1

a
(i)[l]
2
...

a
(i)[l]
nl

 =


max

(
0, z

(i)[l]
1

)
max

(
0, z

(i)[l]
2

)
...

max
(

0, z
(i)[l]
nl

)


da[l]

dz[l] =


I[0,∞)

(
z

(1)[l]
1

)
· · · I[0,∞)

(
z

(m)[l]
1

)
I[0,∞)

(
z

(1)[l]
2

)
· · · I[0,∞)

(
z

(m)[l]
2

)
...

. . .
...

I[0,∞)

(
z

(1)[l]
nl

)
· · · I[0,∞)

(
z

(m)[l]
nl

)


tanh

a
(i)[l]
1

a
(i)[l]
2
...

a
(i)[l]
nl

 =


tanh

(
z

(i)[l]
1

)
tanh

(
z

(i)[l]
2

)
...

tanh
(

z
(i)[l]
nl

)


da[l]

dz[l] =



1−
(

a
(1)[l]
1

)2
· · · 1−

(
a

(m)[l]
1

)2

1−
(

a
(1)[l]
2

)2
· · · 1−

(
a

(m)[l]
2

)2

...
. . .

...
1−

(
a

(1)[l]
nl

)2
· · · 1−

(
a

(m)[l]
nl

)2



2


