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Loss and Activation Functions for Output Layer

In the last layer of a neural network, for our three common settings (regression, binary classification, and multi-class classification):

• a specific loss function is always used
• a corresponding activation function is always used for the last layer (L)
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Multiclass Classification Categorical Cross-Entropy Softmax
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Activation Functions for Hidden Layers

• A rectified linear unit is the recommended default activation function for fully connected (dense) layers.
• tanh is another option that was more common in the past. It can work ok.
• Sigmoid was also used in the past but is definitely not recommended.
• Lots of research about other options.

In the notation below:

• nl is the number of units in layer l

• I[0,∞) (z) =
{

1 if z ∈ [0.∞]
0 otherwise

Vectorized Derivative
Activation (up to constant of proportionality)
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