CHAPTER 6

BAYESIAN STATISTICS

6.1 Multidimensional Bayesian Analysis

This chapter takes up Bayesian statistics. Modern Bayesian statistics relies heavily on
computers, computation, programming, and algorithms, so that will be the major focus of
this chapter. We cannot give a complete treatment here, but there are several good books
that cover these topics in more depth. See, for example, GELMAN ET AL. [2004], Liu [2004],
MARIN AND ROBERT [2007], or RoBERT AND CASELLA [1997].

Recall the framework of Bayesian inference from Section 2.5.

e We posit a parametric family of distributions {p(y|6)}.
e We express our old knowledge of # through a prior probability density p(6).
e The previous two items combine to yield p(y,) and, ultimately, p(6|y).

e The posterior density p(f|y) represents our new state of knowledge about 6.

The posterior density is

pO)p(y|6)
[p®p(y16)do

So far, so good. But in many interesting applications, € is multi-dimensional and
problems arise when we want to examine the posterior. Equation 6.1 tells us how to
evaluate the posterior at any value of 6, but that’s not always sufficient for getting a sense
of which values of 6 are most likely, somewhat likely, unlikely, etc. One way to develop a
feeling for a multidimensional posterior is to examine a marginal posterior density, say

p@ly) =

o< p(&)p(y|6). 6.1)

p(91|y):f—--fp(@l,...,ley)d92...d9k. (6.2)

346

6.1. MULTIDIMENSIONAL BAYESIAN ANALYSIS 347

Unfortunately, the integral in Equation 6.2 is often not analytically tractable and must be
integrated numerically. Standard numerical integration techniques such as quadrature may
work well in low dimensions, but in Bayesian statistics Equation 6.2 is often sufficiently
high dimensional that standard techniques are unreliable. Therefore, new numerical inte-
gration techniques are needed. The most important of these is called Markov chain Monte
Carlo integration, or MCMC. Other techniques can be found in the references at the be-
ginning of the chapter. For the purposes of this book, we investigate MCMC. But first,
to get a feel for Bayesian analysis, we explore posteriors in low dimensional, numerically
tractable examples.

The general situation is that there are multiple parameters 6y, ..., ;, and data yy, ...,
v». We may be interested in marginal, conditional, or joint distributions of the parameters
either a priori or a posteriori. Some examples:

e p(0,...,06), the joint prior
o p(01,...,0c|y1,...,Yn), the joint posterior

o p(O1|y1y...,) = f---fp(Ql,...,Gnlyl,...,yn)dé)z--- dé, the marginal posterior

0f91
[]
p(92’- .. ,9k|91’}71, .. ,)’n) = p(el’- .. ,9k|)’l, .. 7yn)/p(01 |y1’ . ,Yn)
Ocp(gl,...,gklyl,...,yn),
the conditional joint posterior density of (6,, ..., 6;) given 6;, where the “oc” means

that we substitute 8, into the numerator and treat the denominator as a constant.
The examples in this section illustrate the ideas.

Example 6.1 (Ice Cream Consumption, cont.)

This example continues Example 3.5 in which weekly ice cream consumption is mod-
elled as a function of temperature and possibly other variables. We begin with the
model in Equation 3.10:

consumption = B, + Bitemperature + error

or
yi=Bo+pBixi+ €

where €, ..., &0 ~ i.i.d.N(0, o). For now, let us suppose that o is known. Later we'll

drop that assumption. Because o is known, there are only two parameters: 3, and ;.

6.1. MULTIDIMENSIONAL BAYESIAN ANALYSIS 348

For a Bayesian analysis we need a prior distribution for them; then we can compute
the posterior distribution. For now we adopt the following prior without comment. Later
we will see why we chose this prior and examine its consequences.

Bo ~ N(uo, o)
B ~ N, o)
Bo L B1

) -~ (EHE)

for some choice of (uo, i1, 09, 01). The likelihood function is

C(Bo,B1) = pYis---» Y301 B0, B1)
30
= [[p0i150.80)
i=1

_ 1_[(1)e_%(w)z
i=1 \/ﬂ(f

To find the posterior density we will use matrix notation. Let 8 = (’HO) u = (ZO)
1 1

O'2 0) =
=0 ,Y =(Y,,...,Y,) and
(o o3 1

1 temperature,
1 temperature,
1 temperature,,

Conditional on B, ¥ has a 30-dimensional Normal distribution with mean X8 and co-
variance matrix o-213,. The posterior density is proportional to the prior times the likeli-
hood.

DB 7)o ¢~ HB-HE B LF-Xp/ (P-xp)? (6.3)

At this point we observe that the exponent is a quadratic form in 8. Therefore the
posterior density will be a two-dimensional Normal distribution for 8 and we just have

6.1. MULTIDIMENSIONAL BAYESIAN ANALYSIS 349

to complete the square to find the mean vector and covariance matrix. The exponent
is, apart from a factor of —% and some irrelevant constants involving the y;’s,

BIE + XX/ B - 2B u+ XV [P+ = BV E) (B—p) + -

where =* = (' + X'X/0?)! and p* = (X 'u + X'Y/o?). Therefore, the posterior
distribution of B given Y is Normal with mean p* and covariance matrix X*. It is worth
noting (1) that the posterior precision matrix (X*)! is the sum of the prior precision
matrix X~ and a part that comes from the data, X'X/co? and (2) that the posterior mean
is TN p + X'Y /o) = (T + (X'X/o?)(X'X)"' X'Y), a matrix weighted average of
the prior mean p and the least-squares estimate (X'X)~'X'Y where the weights are the
two precisions ™! and X'X/o>.

The derivation of the posterior distribution does not depend on any particular choice
of (i, X), but it does depend on the fact that the prior distribution was Normal because
that’s what gives us the quadratic form in the exponent. That’s one reason we took the
prior distribution for 8 to be Normal: it made the calculations easy.

Now let’s look at the posterior more closely, see what it implies for (8,8,), and
see how sensitive the conclusions are to the choice of (u, X). We're also treating o as
known, so we’'ll need a value. Let’s start with the choice

(o) _ (0O}, _fos 0\ _(10° 0. B
o= (,Ul) = (0) ; X = (0 0'% =l o 109) and o =0.05. (6.4)
The large diagonal entries in X say that we have very little a priori knowledge of 8. We
can use R to calculate the posterior mean and covariance.

ic <- read.table ("data/ice cream.txt", header=T)

mu <-c (0, 0)
Sig <- diag (rep (10846, 2))

sig <- 0.05
X <- cbind (1, ic$temp)
y <- ic$1IC

Sigstar <- solve (solve(Sig) + t(x) %*% x / (sig*2))
mustar <- Sigstar %*% (solve(Sig) %*% mu + t(x) %*% y / (sig*2))

The result is

-4 _ -5
. (.207) q s+ 8.54 x 10 1.570 x 10 6.5)

H =1.003 “{-1570x 105 3.20x% 1077

6.1. MULTIDIMENSIONAL BAYESIAN ANALYSIS 350

12

l

l

|
300 600

l

0 4 8
|
Y O

I
0

T T T 1 1T 1T 1T 1
0.10 0.25 0.001 0.004

Bo B

Figure 6.1: Posterior densities of Sy and ; in the ice cream example using the prior from
Equation 6.4.

Note:

solve performs matrix inversions and solves systems of linear equations.

t(x) is the transpose of x.

%*% performs matrix multiplication.

The matrix product t(x) %*% yis so common it has a special shortcut, crossprod
(x, y). We could have used crossprod to find X* and u*.

Figure 6.1 shows the posterior densities. The posterior density of S, is not very mean-
ingful because it pertains to ice cream consumption when the temperature is 0. Since
our data was collected at temperatures between about 25 and 75, extrapolating to tem-
peratures around 0 would be dangerous. And because g, is not meaningful, neither
is the joint density of (89, 81)- On the other hand, our inference for 3, is meaningful. It
says that ice cream consumption goes up about .003 (+.001 or so) pints per person
for every degree increase in temperature. You can verify whether that's sensible by
looking at Figure 3.8.

6.1. MULTIDIMENSIONAL BAYESIAN ANALYSIS 351

Figure 6.1 was produced by the following snippet.

opar <- par (mfrow=c(1,2))

m <- mustar[1]

sd <- sqrt (Sigstar[1l,1])

X <- seq (m-4*sd, m+4*sd, length=60)

plot (x, dnorm (x, m, sd), type="1",
xlab=expression(betal[0]), ylab="")

m <- mustar[2]

sd <- sqrt (Sigstar[2,2])

X <- seq (m-4*sd, m+4*sd, length=60)

plot (x, dnorm (x, m, sd), type="1",
xlab=expression(betal[1]), ylab="")

Now we’d like to investigate the role of the prior density. We notice that the prior
SD of g, was 10* while the posterior SD is V3.2 x 107 ~ 5.7 x 10™*. In other words,
the data has reduced the uncertainty by a huge amount. Because there’s so much
information in the data, we expect the prior to have little influence. We can verify that
by considering priors with different SD’s and comparing their posteriors. To that end,
consider the prior

_ [H0) _ (O). o2 0\ _ (1 0))
”_(ﬂl)_(O)’ Z‘(o 2" \o 1) and o =0.05. (6.6)

With prior 6.6, the posterior would be

. (207 and s+ 8.53x107* —1.568 x 107>
—1.003 “{-1.568 x 10 3.19x 1077 |°

nearly identical to posterior 6.5. That’s because the data contain much more infor-
mation than the prior, so the prior plays a negligible role in determining the posterior
distribution. The posterior precision matrix (inverse covariance matrix) is ' + X'X /™.
30 1473
In our case, X'X/o? = (1473 20145/
whichever prior we use. Even if we did a careful job of assessing our prior, it would be
influential only if our prior precision matrix had entries of the same order of magnitude
as X'X/o?. Since that’s unlikely — our true a priori variances are probably not as small
as 1/30 — there’s little to be gained by choosing the prior carefully and much effort to
be saved by using an arbitrary prior, as long as it has reasonably large variances.

which has entries much bigger than those in 7!,

6.1. MULTIDIMENSIONAL BAYESIAN ANALYSIS 352

ring ID xcoor ycoor spec dbh 1998 1999 2000
1 11003 0.71 053 pita 194 O 0 0
1 11004 126 236 pita 141 O 0 4
1 11011 144 6.16 pita 194 O 6 0
1 11013 356 584 pita 21.6 O 0 0
1 11017 3775 808 pita 108 O 0 0
6 68053 0.82 10.73 pita 144 O 0 0
6 68055 -224 1334 pita 11 0 0 0
6 68057 -0.78 14.21 pita 8 0 0 0
6 68058 0.76 1455 wpita 106 O 0 0
6 68059 1.48 13 pita 212 O 5 10

Table 6.1: The numbers of pine cones on trees in the FACE experiment, 1998-2000.

Example 6.2 (Pine Cones)

One possible result of increased CO, in the atmosphere is that plants will use some of
the excess carbon for reproduction, instead of growth. They may, for example produce
more seeds, produce bigger seeds, produce seeds earlier in life, or produce seeds
when they, the plants, are smaller. To investigate this possibility in the Duke FACE
experiment (See Example 1.12 and its sequels.) a graduate student went to the FACE
site each year and counted the number of pine cones on pine trees in the control and
treatment plots (LADeau anp Crark [2001] and Example 3.8).

The data are in Table 6.1. The first column is ring. Rings 1, 5, and 6 were control;
2, 3, and 4 were treatment. The next column, ID, identifies each tree uniquely; xcoor
and ycoor give the location of the tree. The next column, spec, gives the species;
pita stands for pinus taeda, or loblolly pine, the dominant canopy tree in the FACE
experiment. The column dbh gives diameter at breast height, a common way for
foresters and ecologists to measure the size of a tree. The final three columns show
the number of pine cones in 1998, 1999, and 2000. We investigate the relationship
between dbh and the number of pine cones, and whether that relationship is the same
in the control and treatment plots.

Figures 6.2, 6.3, and 6.4 plot the numbers of pine cones as a function of dbh in
the years 1998—-2000. In 1998, very few trees had pine cones and those that did had
very few. But by 1999, many more trees had cones and had them in greater number.
There does not appear to be a substantial difference between 1999 and 2000. As a
quick check of our visual impression we can count the fraction of pine trees having
pine cones each year, by ring. The following R code does the job.

6.1. MULTIDIMENSIONAL BAYESIAN ANALYSIS 353

for (i in 1:6) {
good <- cones$ring == i
print (¢ (sum (cones$X1998[good] > 0) / sum(good),
sum (cones$X1999[good] > 0) / sum(good),
sum (cones$X2000[good] > 0) / sum(good)))

}

[1] 0.0000000 0.1562500 0.2083333
[1] 0.05633803 0.36619718 0.32394366
[1] 0.01834862 0.21100917 0.27522936
[1] 0.05982906 0.39316239 0.37606838
[1] 0.01923077 0.10576923 0.22115385
[1] 0.04081633 0.19727891 0.18367347

Since there’s not much action in 1998 we will ignore the data from that year. The data
show a greater contrast between treatment (rings 2, 3, 4) and control (rings 1, 5, 6) in
1999 than in 2000. So for the purpose of this example we’ll use the data from 1999. A
good scientific investigation, though, would use data from all years.

We’re looking for a model with two features: (1) the probability of cones is an
increasing function of dbh and of the treatment and (2) given that a tree has cones,
the number of cones is an increasing function of dbh and treatment. Here we describe
a simple model with these features. The idea is (1) a logistic regression with covariates
dbh and treatment for the probability that a tree is sexually mature and (2) a Poisson
regression with covariates dbh and treatment for the number of cones given that a tree
is sexually mature. Let ¥; be the number of cones on the i’'th tree. Our model is

1 if the ’th tree had extra CO,
Xi = .
0 otherwise

_ |1 ifthe i'th tree is sexually mature
t {O otherwise (67)
exp(Bo + B1dbh; + B>x;)
1 + exp(By + B1dbh; + B,x;)
¢i = exp(yo + y1dbh; + y2x;)
Y; ~ Poi(6:¢;)

m; = Pl6; = 1] =

This model is called a zero-inflated Poisson model. There are six unknown parame-
ters: Bo, B1, B2s Yo, Y1, ¥Y2- We must assign prior distributions and compute posterior

6.1. MULTIDIMENSIONAL BAYESIAN ANALYSIS 354

cones 1998

40 60 80 100

20

ring
[6]

0G0 CCOmEEEERERNROS O 0

(o]
© OGO GICH ®OMBOMED D © 00 cn)@ommm-—ﬁxm

T
5

T
10

T T T
15 20 25

dbh

Figure 6.2: Numbers of pine cones in 1998 as a function of dbh

40 60 80 100

20

6.1. MULTIDIMENSIONAL BAYESIAN ANALYSIS 355
ring
[6]
5 10 15 20 25 5 10 15 20 25

cones 1999

40 60 80 100

20

0® OECENDIXNGRNRREmIXS

° o

00
o © S
o
©Oo@OAMO ‘ﬁx:%oﬂ&b ®
T T T T T
5 10 15 20 25

dbh

Figure 6.3: Numbers of pine cones in 1999 as a function of dbh

40 60 80 100

20

6.1. MULTIDIMENSIONAL BAYESIAN ANALYSIS 356

cones 2000

40 60 80 100

20

ring
5 10 15 20 25 5 10 15 20 25
] 1 1 1]] 1 1 1]
o
© o , o OO
o
0o © O o

Oo
(]
&

o ©° o %o oi g &P
0 @0 o 0® oG@cumumomBRRSHS o)

0_O
° o
0Q
o o ®
o 8 o
® o o o
% o 00O
& S adndibo .
(O) ©O0aDGNO @I @ %o mm‘%o
T T T

dbh

Figure 6.4: Numbers of pine cones in 2000 as a function of dbh

40 60 80 100

20

6.1. MULTIDIMENSIONAL BAYESIAN ANALYSIS 357

distributions of these parameters. In addition, each tree has an indicator 6; and we will
be able to calculate the posterior probabilities P[6; = 1|yy,...,y,]fori=1,...,n.

We start with the priors Bo, 81,52, Y0, Y1, 2 ~ 1..d.U(=100, 100). This prior distribu-
tion is not, obviously, based on any substantive prior knowledge. Instead of arguing
that this is a sensible prior, we will later check the robustness of conclusions to spec-
ification of the prior. If the conclusions are robust, then we will argue that almost any
sensible prior would lead to roughly the same conclusions.

To begin the analysis we write down the joint distribution of parameters and data.

P(yl» oo ’ynaﬁo’ﬁl’ﬁ29 Yos Y1 72)

= p(Bo. B1, B2, Y0, Y1, ¥2) X P15« s ¥ | B0 B15 525 Y0, Y15 Y2)
6
1
= (—200) 12100,1000(B0) X 1<100,100)(B1) X L=100,100)(B2) X 1(Z100,100)(Y0)

X 1(100,1000(¥1) X 1=100,100)(¥2)

y 1—[(exp(Bo + B1dbh; + B,x;)

1 + exp(By + B1dbh; + B>x;)

XeXp(— exp(yo + yidbh; + ¥2x;)) exp(yo + yidbh; + szl-)y’)
vi!

i:yi>0

<[] ! ;
=0 \ L T €xp(Bo + B1dbh; + Box;)
exp(Bo + B1dbh; + B>x;)
1+ CXp(ﬂQ +,31dbhl' +,82)Ci)

exp(—exp(yo + y1dbh; + 72xi))) (6.8)

In Equation 6.8 each term in the product [];.,,., is
P[i'th tree is sexually mature] x p(y;|’th tree is sexually mature)
while each termin [];.,._, is
P[i'th tree is immature] + P[i’th tree is mature but produces no cones].
The posterior p(Bo, 81,82, Yo, Y1, Y2 | V1, - - -, Yu) IS proportional, as a function of
(Bo,B1, 82, Y0, Y1, v2), to Equation 6.8. Similarly, conditional posteriors such as
PBo | B1,B2, Y0, Y1, Y25 V15 - - - » Yu) @re proportional, as a function of 5y, to Equation 6.8.

But that doesn’t allow for much simplification; it allows us to ignore only the factorials
in the denominator.

6.2. METROPOLIS, METROPOLIS-HASTINGS, AND GIBBS 358

To learn about the posterior in, say, Equation 6.8 it is easy to write an R function
that accepts (8o, 51,52, Y0, ¥1,Y2) as input and returns 6.8 as output. But that’s quite a
complicated function of (8o, 51,52, Y0, Y1, Y2) and it’s not obvious how to use the function
or what it says about any of the six parameters or the 6;’s. Therefore, in Section 6.2 we
present an algorithm that is very powerful for evaluating the integrals that often arise in
multivariate Bayesian analyses.

6.2 The Metropolis, Metropolis-Hastings, and Gibbs Sam-
pling Algorithms

In “Markov chain Monte Carlo”, the term “Monte Carlo” refers to evaluating an integral by
using many random draws from a distribution. To fix ideas, suppose we want to evaluate

Equation 6.2. Let g = (61,...,6,). If we could generate many samples é’b e ,ﬁM of
6 (where 6; = (6,1,...,6;;)) from its posterior distribution then we could approximate
Equation 6.2 by
1. discarding 6;,, ..., 6;; from each iteration,
2. retaining 6y 1,...,01,
3. using b, 4, ..., 0y and standard density estimation techniques (page 105) to estimate
p(611y), or

4. for any set A, using
number of 6;,’s in A

M

as an estimate of P[#; € A|y].

That’s the idea behind Monte Carlo integration.

The term “Markov chain” refers to how the samples 51, ... ,5M are produced. In a
Markov chain there is a transition density or transition kernel k(@ | 51-_1) which is a density
for generating 5, given 5,~-1. We first choose 51 almost arbitrarily, then generate (52 | 51),
(§3|§2), and so on, in succession, for as many steps as we like. Each 671 has a density
pi = p(é),-) which depends on 51 and the transition kernel. But,

1. under some fairly benign conditions (See the references at the beginning of the chap-
ter for details.) the sequence p;, p», ...converges to a limit p, the stationary distri-
bution, that does not depend on 6,;

6.2. METROPOLIS, METROPOLIS-HASTINGS, AND GIBBS 359

2. the transition density k(ﬁi | 67,~_1) can be chosen so that the stationary distribution p is
equal to p(6]y);

3. wecan find an m such thati >m = p; = p = p(gly);
4. then §m+l’ e, §M are, approximately, a sample from p(67 | y).

The Metropolis-Hastings algorithm [METROPOLIS ET AL., 1953, Hastings, 1970] is one
way to construct an MCMC algorithm whose stationary distribution is p(@|y). It works
according to the following steps.

1. Choose a proposal density g(é)* 16).
2. Choose 51.
3. Fori=2,3,...

e Generate a proposal g from g(ﬁ* 16_1).

r = min {1, p(_)@* Iy)g(G,:l |f*) } . (6.9)
p(Oi-1 [y)g(6" | 6i-1)

o Set

e Set .
7 - 6* with probability r,
" 16, with probability 1 — r.

Step 3 define the transition kernel k. In many MCMC chains, the acceptance probability r
may be strictly less than one, so the kernel k is a mixture of two parts: one that generates
a new value of @H * 5, and one that sets @H = 5,

To illustrate MCMC, suppose we want to generate a sample 6, ..., 819000 from the
Be(5, 2) distribution. We arbitrarily choose a proposal density g(6*|6) = U@ —.1,6 + .1)
and arbitrarily choose #; = 0.5. The following R code draws the sample.

samp <- rep (NA, 10000)
samp[1] <- 0.5
for (i in 2:10000) {
prev <- samp[i-1]
thetastar <- runif (1, prev - .1, prev + .1)
r <- min (1, dbeta(thetastar,5,2) / dbeta(prev,5,2))
if (rbinom (1, 1, r) ==1)
new <- thetastar

6.2. METROPOLIS, METROPOLIS-HASTINGS, AND GIBBS 360

else
new <- prev
samp[i] <- new

}

The top panel of Figure 6.5 shows the result. The solid curve is the Be(5, 2) density and the
histogram is made from the Metropolis-Hastings samples. They match closely, showing
that the algorithm performed well.

Figure 6.5 was produced by

par (mfrow=c(3,1))

hist (samp[-(1:1000)], prob=TRUE, xlab=expression(theta),
ylab="", main="")

X <- seq(®,1,length=100)

lines (x, dbeta(x,5,2))

plot (samp, pch=".", ylab=expression(theta))

plot (dbeta(samp,5,2), pch=".", ylab=expression(p(theta)))

The code samp[-(1:1000)] discards the first 1000 draws in the hope that the sampler
will have converged to its stationary distribution after 1000 iterations.

Assuming that convergence conditions have been met and that the algorithm is well-
constructed, MCMC chains are guaranteed eventually to converge and deliver samples
from the desired distribution. But the guarantee is asymptotic and in practice the output
from the chain should be checked to diagnose potential problems that might arise in finite
samples.

The main thing to check is mixing. An MCMC algorithm operates in the space of g.
At each iteration of the chain, i.e., for each value of i, there is a current location 67; At the
next iteration the chain moves to a new location 6. In this way the chain explores the g
space. While it is exploring it also evaluates p(é-). In theory, the chain should spend many
iterations at values of § where p(§) is large — and hence deliver many samples of @'s with
large posterior density — and few iterations at values where p(?f) is small. For the chain to
do its job it must find the mode or modes of p(ﬁ), it must move around in their vicinity, and
it must move between them. The process of moving from one part of the space to another
is called mixing.

The middle and bottom panels of Figure 6.5 illustrate mixing. The middle panel plots
0; vs. i. It shows that the chain spends most of its iterations in values of § between about 0.6

6.2. METROPOLIS, METROPOLIS-HASTINGS, AND GIBBS 361

2.0
|

1.0

0.0

0.2 0.4 0.6 0.8 1.0

1.0

0.6
1

0 2000 4000 6000 8000 10000

Index

2.0
1

p(6)
1.0

0.0
1

0 2000 4000 6000 8000 10000

Index

Figure 6.5: 10,000 MCMC samples of the Be(5,2) density. Top panel: histogram of
samples from the Metropolis-Hastings algorithm and the Be(5, 2) density. Middle panel:
0; plotted against i. Bottom panel: p(6;) plotted against i.

6.2. METROPOLIS, METROPOLIS-HASTINGS, AND GIBBS 362

and 0.9 but makes occasional excursions down to 0.4 or 0.2 or so. After each excursion
it comes back to the mode around 0.8. The chain has taken many excursions, so it has
explored the space well. The bottom panel plots p(6;) vs. i. It shows that the chain spent
most of its time near the mode where p(6) ~ 2.4 but made multiple excursions down to
places where p(6) is around 0.5, or even less. This chain mixed well.

To illustrate poor mixing we’ll use the same MCMC algorithm but with different pro-
posal kernels. First we’ll use (6*|6) = U(6 — 100, 6 + 100) and change the corresponding
line of code to
thetastar <- runif (1, prev - 100, prev + 100). Then we’ll use (68"]6) =
U@ - .00001, 6 + .00001) and change the corresponding line of code to
thetastar <- runif (1, prev - .00001, prev + .00001). Figure 6.6 shows
the result. The left-hand side of the figure is for (6*|6) = U(@ — 100, 6 + 100). The top
panel shows a very much rougher histogram than Figure 6.5; the middle and bottom pan-
els show why. The proposal radius is so large that most proposals are rejected; therefore,
0;+1 = 6; for many iterations; therefore we get the flat spots in the middle and bottom pan-
els. The plots reveal that the sampler explored fewer than 30 separate values of 6. That’s
too few; the sampler has not mixed well. In contrast, the right-hand side of the figure —
for (87 16) = U(6 - .00001, 8 + .00001) — shows that 8 has drifted steadily downward, but
over a very small range. There are no flat spots, so the sampler is accepting most propos-
als, but the proposal radius is so small that the sampler hasn’t yet explored most of the
space. It too has not mixed well.

Plots such as the middle and bottom plots of Figure 6.6 are called trace plots because
they trace the path of the sampler.

In this problem, good mixing depends on getting the proposal radius not too large and
not too small, but just right (HassaLL [1909]). To be sure, if we run the MCMC chain
long enough, all three samplers would yield good samples from Be(S,2). But the first
sampler mixed well with only 10,000 iterations while the others would require many more
iterations to yield a good sample. In practice, one must examine the output of one’s MCMC
chain to diagnose mixing problems. No diagnostics are fool proof, but not diagnosing is
foolhardy.

Several special cases of the Metropolis-Hastings algorithm deserve separate mention.

Metropolis algorithm It is often convenient to choose the proposal density g(é_f* 16) to
be symmetric; i.e., so that g(ﬁ* |§) = g(ﬁ |§*). In this case the Metropolis ratio
P& 19881 16/ p(Bi-1 | y)g(@" | 6i-1) simplifies to p(6" |y)/p(fi—i |y). That’s what
happened in the Be(5, 2) illustration and why the line
r <- min (1, dbeta(thetastar,5,2) / dbeta(prev,5,2)) doesn’tinvolve

g.

6.2. METROPOLIS, METROPOLIS-HASTINGS, AND GIBBS 363

- - _ _
A o
o
LA o
~ 4 2
o
o
- re)
o o |_
I T T 1 T T T 1T T 1
0.2 0.4 0.6 0.8 0.4990 0.4994 0.4998 0.5002
0 0
o — —
2 4
-— __ - w =
~ — - S
o <
@ — - o © _
© -
c | — .
AN
T S
2] 2
= o
T T T T T T T T T T T T
0 2000 6000 10000 0 2000 6000 10000
Index Index
— J—— — [o0]
_ _ Q]
S _ S
s _] - e 8]
a o | a o -
-~ — _ o _
o] _ o]
o T T T T T T 2 T T T T T
0 2000 6000 10000 0 2000 6000 10000
Index Index

Figure 6.6: 10,000 MCMC samples of the Be(5, 2) density. Left column: (6*|6) = U(6 —
100, 6 + 100); Right column: (6" |6) = U(6 — .00001,6 + .00001). Top: histogram of
samples from the Metropolis-Hastings algorithm and the Be(5,2) density. Middle: 6,
plotted against i. Bottom: p(6;) plotted against i.

6.2. METROPOLIS, METROPOLIS-HASTINGS, AND GIBBS 364

Independence sampler It may be convenient to choose g(ﬁ* |§) = g(ﬁ*) not dependent
on 6. For example, we could have used thetastar <- runif(1) in the Be(5,2)

illustration.
Multiple transition kernels We may construct multiple transition kernels, say g1, ..., gu-
Then for each iteration of the MCMC chain we can randomly choose j € {1,...,m}

and make a proposal according to g;. We would do this either for convenience or to
improve the convergence rate and mixing properties of the chain.

Gibbs sampler [Geman anD GEMAN, 1984] In many practical examples, the so-called full
conditionals or complete conditionals p(6;]6;),y) are known and easy to sample

for all j, where 6_;, = (6,...,0,-1,0j11,...,6). In this case we may sample 6; ;
from
p(9, | Qi,l, ey Hi,j—l’ 91'_1’]'4.1, ey gi—l,k) for _] = 1, R ,k and set é; = (9,"1, ey Qi,k)- We

would do this for convenience.

The next example illustrates several MCMC algorithms on the pine cone data of Ex-
ample 6.2.

Example 6.3 (Pine Cones, cont)
In this example we try several MCMC algorithms to evaluate and display the posterior
distribution in Equation 6.8. Throughout this example, we shall, for compactness, refer
to the posterior density as p(§) instead of p(§|y1, s V)

First we need functions to return the prior density and the likelihood function.

dprior <- function (params, log=FALSE) {

logprior <- (dunif (params["b0"], -100, 100, log=TRUE
dunif (params["b1"], -100, 100, log=TRUE
dunif (params["b2"], -100, 100, 1og=TRUE
dunif (params["g0®"], -100, 100, 1og=TRUE
dunif (params["gl"], -100, 100, 1og=TRUE
dunif (params["g2"], -100, 100, log=TRUE

LA AR A = S)

+ + + + +

)
if (log) return (logprior)
else return (exp(logprior))

}

lik <- function (params, n.cones=cones$X2000, dbh=cones$dbh,
trt=cones$trt, log=FALSE) {
zero <- n.cones == 0

6.2. METROPOLIS, METROPOLIS-HASTINGS, AND GIBBS 365

tmpl <- params["b®"] + params["b1"] * dbh + params["b2"] * trt
tmp2 <- params["g0"] + params["gl"] * dbh + params['g2"] * trt
etmpl <- exp(tmpl)
etmp2 <- exp(tmp2)

loglik <- (sum (tmpl[!zero])
- sum (etmp2[!zero])
sum (n.cones[!zero] * tmp2[!zero])
sum (log (1 + etmpl[zero] * exp (-etmp2[zero])))
- sum (log (1 + etmpl))

+ +

)
if (log) return (loglik)
else return (exp(loglik))

Now we write a proposal function. This ones makes (67* | 5) ~ N(67, .1Ig), where I is the
6 X 6 identity matrix.

g.all <- function (params) {
sig <- ¢(.1,.1,.1,.1,.1,.1)
proposed <- mvrnorm (1, mu=params, Sigma=diag(sig))
return (list (proposed=proposed, ratio=1))

}

Finally we write the main part of the code. Try to understand it; you may have to write
something similar. Notice an interesting feature of R: assigning names to the compo-
nents of params allows us to refer to the components by name in the 1ik function.

initial values
params <_ C (Ilb®"=®’ Ilb1|l=®’ Ilb2|l=®’ Hg®ll=®, Ilgll|=®’ |192H=®)

number of iterations
mc <- 10000

storage for output
mcmc.out <- matrix (NA, mc, length(params)+1)

6.2. METROPOLIS, METROPOLIS-HASTINGS, AND GIBBS 366

the main loop
for (i in 1:mc) {
prop <- g.all (params)
new <- prop$proposed
log.accept.ratio <- (dprior (new, log=TRUE)
dprior (params, log=TRUE)
+ lik (new, 1log=TRUE)
- lik (params, 1log=TRUE)
- log (prop$ratio)
)

accept.ratio <- min (1, exp(log.accept.ratio))

if (as.logical (rbinom(1l,1,accept.ratio)))
params <- new

mcmc.out[i,] <- ¢ (params, lik (params, log=TRUE))

Figure 6.7 shows trace plots of the output. The plots show that the sampler did not
move very often; it did not mix well and did not explore the space effectively.

Figure 6.7 was produced by the following snippet.

par (mfrow=c(4,2), mar=c(4,4,1,1)+.1)
for (i in 1:6)

plot (mcmc.out[,i], ylab=names(params)[i], pch=".")
plot (mcmc.out[,7], ylab=expression(p(theta)), pch=".")

When samplers get stuck, sometimes it's because the proposal radius is too large.
So next we try a smaller radius: sig <- rep(.01,6). Figure 6.8 shows the result.
The sampler is still not mixing well. The parameter 3, travelled from its starting point of
Bo = 0 to about By = —1.4 or so, then seemed to get stuck; other parameters behaved
similarly. Let’s try running the chain for more iterations: mc <- 100000. Figure 6.9
shows the result. Again, the sampler does not appear to have mixed well. Parameters
Bo and By, for example, have not yet settled into any sort of steady-state behavior and

6.2. METROPOLIS, METROPOLIS-HASTINGS, AND GIBBS

b0

b2

g1

p(6)
500

Figure 6.7: Trace plots of MCMC output from the pine cone code on page 365.

-0.2 0.2

0.8

-0.2

0.6

1500 0.00 0.10 -1.0

-500

[I I I

0 2000 6000 10000
Index
™ T T T T
0 2000 6000 10000
Index
T T T T T
0 2000 6000 10000
Index
™ T T T T
0 2000 6000 10000
Index

b1

g0

g2

0.0 0.1

0.2

-0.5 0.0

-1.5

02 04

0.2

0 2000 6000 10000
Index

T T T T T

0 2000 6000 10000
Index

T T T T T

0 2000 6000 10000
Index

367

6.2. METROPOLIS, METROPOLIS-HASTINGS, AND GIBBS

b0

b2

g1

p(6)

-0.2

-0.8

-1.4

0.1

0.1

-0.3

0.10 0.14

0.06

1400

1000

0 2000 6000 10000
Index
T T T T T T
0 2000 6000 10000
Index
T T T T T T
0 2000 6000 10000
Index
————————
T T T T T T
0 2000 6000 10000
Index

b1

g0

g2

0.00 0.10

-0.15

0.2

-0.4

-1.0

0.15 0.30

0.00

368

T T T T T T

0 2000 6000 10000
Index
T T T T T T
0 2000 6000 10000
Index
. — T T T
0 2000 6000 10000
Index

Figure 6.8: Trace plots of MCMC output from the pine cone code with a smaller proposal

radius.

6.2. METROPOLIS, METROPOLIS-HASTINGS, AND GIBBS 369

p(ﬁ) seems to be steadily increasing, indicating that the sampler may not yet have
found the posterior mode.

It is not always necessary to plot every iteration of an MCMC sampler. Figure 6.9
plots every 10’th iteration; plots of every iteration look similar. The figure was produced
by the following snippet.

par (mfrow=c(4,2), mar=c(4,4,1,1)+.1)
plotem <- seq (1, 100000, by=10)
for (i in 1:6)
plot (mcmc.out[plotem,i], ylab=names(params)[i], pch=".")
plot (mcmc.out[plotem,7], ylab=expression(p(theta)), pch=".")

The sampler isn’t mixing well. To write a better one we should try to understand
why this one is failing. It could be that proposing a change in all parameters simulta-
neously is too dramatic, that once the sampler reaches a location where p(@)is large,
changing all the parameters at once is likely to result in a location where p(ﬁ) is small,
therefore the acceptance ratio will be small, and the proposal will likely be rejected. To
ameliorate the problem we’ll try proposing a change to only one parameter at a time.
The new proposal function is

g.one <- function (params) {
sig <- ¢ ("b®"=.1, "b1"=.1, "b2"=.1,
which <- sample (names(params), 1)
proposed <- params
proposed[which] <- rnorm (1, mean=params[which], sd=sig[which])
return (list (proposed=proposed, ratio=1))

llg®"=.1’ "gl”:.l, "gZ":.l)

which randomly chooses one of the six parameters and proposes to update that pa-
rameter only. Naturally, we edit the main loop to use g.one instead of g.all. Fig-
ure 6.10 shows the result. This is starting to look better. Parameters 8, and vy, are ex-
hibiting steady-state behavior; so are 8, and 3;, after iteration 10,000 or so (x = 1000
in the plots). Still, ¥, and y, do not look like they have converged.

Figure 6.11 illuminates some of the problems. In particular, 5, and 5, seem to be
linearly related, as do y, and y,. This is often the case in regression problems; and we

6.2. METROPOLIS, METROPOLIS-HASTINGS, AND GIBBS

b0

b2

g1

p(6)

-2.0

-3.0

4.0

03 05 0.7

0.1

0.17 0.19

0.15

1755 1770

1740

0 2000 6000 10000
Index
— T T T T
0 2000 6000 10000
Index
™ T T T —
0 2000 6000 10000
Index
— T T T T
0 2000 6000 10000
Index

b1

g0

g2

0.12

-1.2 0.06

-1.6

-2.0

0.25 0.35 045

370

0 2000 6000 10000
Index

T T T T T

0 2000 6000 10000
Index

T T T T

0 2000 6000 10000
Index

Figure 6.9: Trace plots of MCMC output from the pine cone code with a smaller proposal
radius and 100,000 iterations. The plots show every 10’th iteration.

6.2. METROPOLIS, METROPOLIS-HASTINGS, AND GIBBS

b0

b2

g1

p(6)
500

1.2

0.0 04 0.8

0.10

1500 0.00

-500

i
i
'
!
!
H

41 o h
T T T T T T
0 2000 6000 10000
Index
T T T T —
0 2000 6000 10000
Index
— e, ;:J:;-ﬁ\';"w-r%:(
et
__“-f
[e e e — —
0 2000 6000 10000
Index
[
™ T T T T T
0 2000 6000 10000
Index

b1

g0

g2

0.10 0.25

-0.05

-0.5 0.0

-1.5

02 04

0.0

™ T T T T T

0 2000 6000 10000

Index

[I I I I I
0 2000 6000 10000

Index

i I I I I I
0 2000 6000 10000

Index

371

Figure 6.10: Trace plots of MCMC output from the pine cone code with proposal function
g.one and 100,000 iterations. The plots show every 10’th iteration.

6.2. METROPOLIS, METROPOLIS-HASTINGS, AND GIBBS 372

have seen it before for the pine cones in Figure 3.15. In the current setting it means
that p(@|y,...,y,) has ridges: one along a line in the (8o, 8,) plane and another along
a line in the (v, y1) plane.

Figure 6.11 was produced by the following snippet.

plotem <- seq (10000, 100000, by=10)
pairs (mcmc.out[plotem,], pch=".",
labels=c(names(params), "density"))

As Figure 6.10 shows, it took the first 10,000 iterations or so for 8y, and B, to reach a
roughly steady state and for p(67) to climb to a reasonably large value. If those iterations
were included in Figure 6.11, the points after iteration 10,000 would be squashed
together in a small region. Therefore we made plotem <- seq (10,000, 100000,
by=10) to drop the first 9999 iterations from the plots.

If our MCMC algorithm proposes a move along the ridge, the proposal is likely to be
accepted. But if the algorithm proposes a move that takes us off the ridge, the proposal
is likely to be rejected because p would be small and therefore the acceptance ratio
would be small. But that’s not happening here: our MCMC algorithm seems not to be
stuck, so we surmise that it is proposing moves that are small compared to the widths
of the ridges. However, because the proposals are small, the chain does not explore
the space quickly. That's why y, and y, appear not to have reached a steady state.
We could improve the algorithm by proposing moves that are roughly parallel to the
ridges. And we can do that by making multivariate Normal proposals with a covariance
matrix that approximates the posterior covariance of the parameters. We’ll do that by
finding the covariance of the samples we've generated and using it as the covariance
matrix of our proposal distribution. The R code is

Sig <- cov (mcmc.out[10000:100000,-7]1)

g.group <- function (params) {
proposed <- mvrnorm (1, mu=params, Sigma=Sig)
return (list (proposed=proposed, ratio=1))

}

We drop the first 9999 iterations because they seem not to reflect p(ﬁ) accurately. Then
we calculate the covariance matrix of the samples from the previous MCMC sampler.

6.2. METROPOLIS, METROPOLIS-HASTINGS, AND GIBBS 373

0.16 0.30 0.20 0.55
| LIl
<
[T}
1
0
©
I
< -
N]
o
© -
[}
N
©
o
o
o
<
P
[
e 7
0
©]
T
o -
ﬂ: —
o
o
(\! —
o
C &
density [~ ~
. : L o
.. . ©
TTTTTT TTTTTTT LLLLLLLIS

-6.5 0.0 1.2 0.12 0.17 1760

Figure 6.11: Pairs plots of MCMC output from the pine cones example.

6.2. METROPOLIS, METROPOLIS-HASTINGS, AND GIBBS 374

That covariance matrix is used in the proposal function. The results are shown in
Figures 6.12 and 6.13. Figure 6.12 shows that the sampler seems to have converged
after the first several thousand iterations. The posterior density has risen to a high
level and is hovering there; all six variables appear to be mixing well. Figure 6.13
confirms our earlier impression that the posterior density seems to be approxiately
Normal — at least, it has Normal-looking two dimensional marginals — with 3, and
1 highly correlated with each other, y, and y, highly correlated with each other, and
no other large correlations. The sampler seems to have found one mode and to be
exploring it well.

Figures 6.12 and 6.13 were produced with the following snippet.

plotem <- seq (1, 100000, by=10)
par (mfrow=c(4,2), mar=c(4,4,1,1)+.1)
for (i in 1:6)
plot (mcmc.out[plotem,i], ylab=names(params)[i], pch=".")
plot (mcmc.out[plotem,7], ylab=expression(p(theta)), pch=".")

plotem <- seq (1000, 100000, by=10)
pairs (mcmc.out[plotem,], pch=".",
labels=c(names(params), "density"))

Now that we have a good set of samples from the posterior, we can use it to
answer substantive questions. For instance, we might want to know whether the extra
atmospheric CO, has allowed pine trees to reach sexual maturity at an earlier age
or to produce more pine cones. This is a question of whether 8, and y, are positive,
negative, or approximately zero. Figure 6.14 shows the answer by plotting the posterior
densities of 8, and y,. Both densities put almost all their mass on positive values,
indicating that P[3, > 0] and P[y, > 0] are both very large, and therefore that pines
trees with excess CO, mature earlier and produce more cones than pine trees grown
under normal conditions.

Figure 6.14 was produced by the following snippet.

par (mfrow=c(l1,2))
plot (density (mcmc.out[10000:100000, "b2"]),

6.2. METROPOLIS, METROPOLIS-HASTINGS, AND GIBBS

o
o~
I
o Y A
o]
© _|
]
o _|
]
0 2000 6000 10000
Index
N
o]
<
AR T T T T T
0 2000 6000 10000
Index
o
N
o
o ;
° s
o
o
o H
T T T T T T
0 2000 6000 10000
Index
=} !
o _1i
0w :
2 o
o O -
[Tl
o :
o -
O T T T T T
0 2000 6000 10000
Index

g2

-3.0

0.0 02 04 06

375

2000 6000

Index

2000 6000

Index

2000 6000 10000

Index

Figure 6.12: Trace plots of MCMC output from the pine cone code with proposal function
g.group and 100,000 iterations. The plots show every 10’th iteration.

6.2. METROPOLIS, METROPOLIS-HASTINGS, AND GIBBS 376

0.15 0.35
1111

0.15 0.25 0.35
I T N

-1.0

-2.0
1

0.6

0.2

density

[
1760

TTTT) TTT =TT T T
-7 -4 0.0 0.12 0.19 1760

Figure 6.13: Pairs plots of MCMC output from the pine cones example with proposal
g.group.

6.3. EXERCISES 377

o
N
— ©]
& o | CE
B - ot
p— N pa—
o — e — — —
o [| | ° T 1T T 1
0.0 1.0 0.2 04 06
B2 Y2

Figure 6.14: Posterior density of 5, and y, from Example 6.3.

xlab=expression(betal[2]),
ylab=expression(p(betal[2])), main="")
plot (density (mcmc.out[10000:100000,"g2"]),
xlab=expression(gammal[2]),
ylab=expression(p(gamma[2])), main="")

6.3 Exercises

1. This exercise follows from Example 6.1.

(a) Find the posterior density for Csg, the expected amount of ice cream consumed
when the temperature is 50 degrees, by writing Csy as a linear function of
(Bo, B1) and using the posterior from Example 6.1.

(b) Find the posterior density for Csy by reparameterizing. Instead of working with
parameters (B, 51), work with parameters (Cso,31). Write the equation for Y;
as a linear function of (Csg, 8,) and find the new X matrix. Use that new matrix
and a convenient prior to calculate the posterior density of (Csg, 51).

