
Probability for Stat 343
Notation

We will use capital letters like X and Y to represent random variables, and lower case x and y to denote observed values
or values we might hypothetically observe. I will sometimes also use capital letters to stand for matrices, and we’ll just
have to be clear from the context about what is a matrix and what is a random variable.

In type written text, I will use bold letters to denote vectors, which are column vectors by default:

X =


X1
X2
...
Xd

 is a random vector and x =


x1
x2
...
xd

 is a vector of observed values.

When writing on the board I will use a squiggly underline to denote vectors:

X
∼

=


X1
X2
...
Xd

 is a random vector and x
∼

=


x1
x2
...
xd

 is a vector of observed values.

Probability Mass/Density Function (p.m.f., p.d.f.), Cumulative Distribution Function (c.d.f.):

If X is a discrete random variable, then the probability mass function fX(x) = P (X = x)

If X is a continuous random variable, then the probability density function fX(x) can be used to find P (X ∈ [a, b]) =∫ b
a
fX(x)dx

The cumulative distribution function is F (x) = P (X ≤ x):

• If X is discrete, F (x) =
∑x
t=−∞ fX(t)

• If X is continuous, F (x) =
∫ x
−∞ fX(t)dt

Joint Distributions from the Marginals

If X and Y and both discrete, then they have a joint p.m.f.: fX,Y (x, y) = P (X = x and Y = y)

If X and Y are both continuous, then they have a joint p.d.f.: P (X ∈ [a, b] and Y ∈ [c, d]) =
∫ b
a

∫ d
c
fX,Y (x, y) dx dy

If one of X and Y is discrete and the other is continuous, it’s possible to define a similar probability function fX,Y (x, y).

If X and Y are independent, then their joint p.f. is the product of their marginal p.f.’s:

fX,Y (x, y) = fX(x)fY (y)

If X and Y are not independent, their joint p.f. is the product of the marginal for one and the conditional for the second
given the first:

fX,Y (x, y) = fX(x)fY |X(y|x) = fY (y)fX|Y (x|y)

Marginal distributions from the Joint

Suppose X and Y have joint probability function fX,Y (x, y).

If X is discrete, then the marginal probability function for Y is fY (y) =
∑
x fX,Y (x, y)

If X is continuous, then the marginal probability function for Y is fY (y) =
∫∞
−∞ fX,Y (x, y)dx
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Conditional Distributions

By definition, the conditional distribution for Y |X = x has p.f. fY |X(y|x) = fX,Y (x,y)
fX (x) .

This also extends to more random variables. For example (W,X)|Y = y, Z = z have the joint conditional distribution with
p.f. fW,X|Y,Z(w, x|y, z) = f(w,x,y,z)

f(y,z)

Bayes’ Rule

If I know the marginal distribution for X has p.f. fX(x) and the conditional distribution for Y |X has p.f. fY |X(y|x) then I
can calculate the p.f. for the conditional distribution of X|Y as follows:

fX|Y (x|y) = fX,Y (x, y)
fY (y)

= fX,Y (x, y)∫
fX,Y (x, y)dx

=
fX(x)fY |X(y|x)∫
fX(x)fY |X(y|x)dx

If X is discrete, replace the integral in the denominator by a summation.

There are two ways of explaining why this is useful:

1. It lets us reverse the order of conditioning from Y |X (what we know to start with) to X|Y .

2. It lets us update our knowledge about the distribution of X having observed a value of Y = y.

Expected Value and Variance

E(X) =
∫
xfX(x)dx

V ar(X) =
∫

(x− E(X))2fX(x)dx

=
∫

(x2 − 2xE(X) + E(X)2)fX(x)dx

=
∫
x2fX(x)dx− 2E(X)

∫
xdx+ E(X)2

∫
fX(x)dx

= E(X2)− E(X)2

E(aX + b) = aE(X) + b

V ar(aX + b) = a2V ar(X)
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Central Limit Theorem

There are many slightly different statements of the central limit theorem. Here’s one:

Formal statement in a not-too-useful form

Suppose X1, X2, . . . is a sequence of independent, identically distributed (i.i.d.) random variables with E(Xi) = µ and

V ar(Xi) = σ2 < ∞. Define the sequence of random variables Zn =
√
n
σ

(∑n

i=1
Xi

n − µ
)
. Then as n approaches infinity,

the random variables Zn converge in distribution to a Normal(0, 1) random variable.

Informal statement, still not too useful

If n is “large enough” (how large? it depends.), it’s approximately true that

Zn =
√
n

σ

(∑n
i=1 Xi

n
− µ

)
∼ Normal(0, 1)

as long as the Xi are i.i.d. with mean µ and variance σ2

Some intermediate steps

Let’s multiply Zn by σ√
n
and add µ.

Since Zn ∼ Normal(0, 1) (approximately, for large n), σ√
n
Zn + µ ∼ Normal

(
µ, σ

2

n

)
(approximately, for large n).

We see that

σ√
n
Zn + µ = σ√

n

√
n

σ

(∑n
i=1 Xi

n
− µ

)
+ µ

=
∑n
i=1 Xi

n
− µ+ µ

=
∑n
i=1 Xi

n

Informal statement, more useful

If n is “large enough” (how large? it depends.), it’s approximately true that

∑n
i=1 Xi

n
∼ Normal

(
µ,
σ2

n

)
as long as the Xi are i.i.d. with mean µ and variance σ2
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