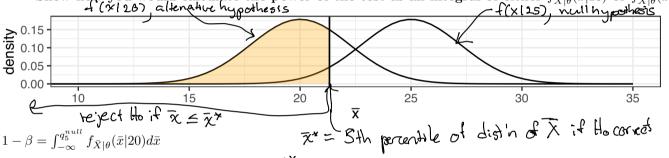
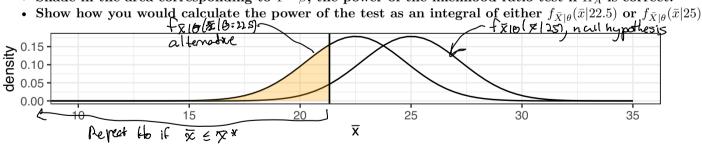
Warm Up: Power Functions for Hypothesis Tests

- Data Model: $X_1, \ldots, X_5 \stackrel{\text{i.i.d.}}{\sim} \text{Normal}(\theta, 5^2)$
- We saw that the likelihood ratio test is equivalent to a test based on \bar{x} . The p-value is $P(\bar{X} < \bar{x} | \theta = 25)$ ("extreme" values of \bar{x} are those that are at least as small as \bar{x})
- The power of the test is $P(\text{reject } H_0|H_0 \text{ incorrect}) = P(\overline{\chi} \in \mathbb{R}^* \mid H_0 \text{ incorrect})$ こP(下 ビネ*1日=20)
- 1. Consider a test of the hypotheses $H_0: \theta = 25$ vs. $H_A: \theta = 20$. Below is a picture showing the pdf $f_{\bar{X}|\theta}(\bar{x}|20)$ of a Normal $(20,5^2/5)$ distribution and the pdf $f_{\bar{X}|\theta}(\bar{x}|25)$ of a Normal $(25,5^2/5)$ distribution, along with a vertical line at q_5^{null} , the 5th percentile of the Normal(25,5²/5) distribution.
 - Shade in the area corresponding to $1-\beta$, the power of the likelihood ratio test if H_A is correct.
 - Show how you would calculate the power of the test as an integral of either $f_{\bar{X}|\theta}(\bar{x}|20)$ or $f_{\bar{X}|\theta}(\bar{x}|25)$ alterative hypothesis



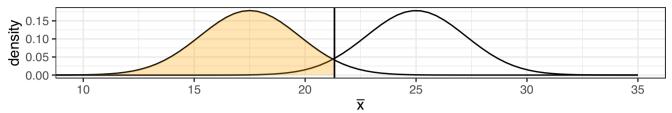
- 2. Suppose that instead we were testing the hypotheses $H_0: \theta = 25$ vs. $H_A: \theta = 22.5$. Below is a picture showing the pdf $f_{\bar{X}|\theta}(\bar{x}|22.5)$ of a Normal $(22.5, 5^2/5)$ distribution and the pdf $f_{\bar{X}|\theta}(\bar{x}|25)$ of a Normal $(25, 5^2/5)$ distribution, along with a vertical line at q_5^{null} , the 5th percentile of the Normal(25, 5²/5) distribution.
 - Shade in the area corresponding to $1-\beta$, the power of the likelihood ratio test if H_A is correct.



$$1 - \beta = \int_{-\infty}^{q_5^{null}} f_{\bar{X}|\theta}(\bar{x}|22.5) d\bar{x}$$

Note: power of test is smaller if the from alternative hypothesis is closer to the from null hypothesis.

- 3. Suppose that instead we were testing the hypotheses $H_0:\theta=25$ vs. $H_A:\theta=17.5$. Below is a picture showing the pdf $f_{\bar{X}|\theta}(\bar{x}|17.5)$ of a Normal $(17.5,5^2/5)$ distribution and the pdf $f_{\bar{X}|\theta}(\bar{x}|25)$ of a Normal $(25,5^2/5)$ distribution, along with a vertical line at q_5^{null} , the 5th percentile of the Normal $(25,5^2/5)$ distribution.
 - Shade in the area corresponding to $1-\beta$, the power of the likelihood ratio test if H_A is correct.
 - Show how you would calculate the power of the test as an integral of either $f_{\bar{X}|\theta}(\bar{x}|17.5)$ or $f_{\bar{X}|\theta}(\bar{x}|25)$



$$1 - \beta = \int_{-\infty}^{q_5^{null}} f_{\bar{X}|\theta}(\bar{x}|17.5) d\bar{x}$$

4. For which of the alternative hypotheses above ($\theta = 17.5$, $\theta = 20$, or $\theta = 22.5$) is the power of the test largest? For which is the power smallest?

The power is largest for $\theta = 17.5$ and smallest for $\theta = 22.5$.

Observation: The power of the test depends on the alternative hypothesis

Definition: power function

In puevous examples, A = (-00, 95]

The power function $K(\theta)$ for a test is the power of the test at θ :

$$K(\theta) = \int_{R} f_{\mathbf{X}|\theta}(\mathbf{x}|\theta) d\mathbf{x} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{\mathbf{X}|\theta}(\mathbf{x}|\theta) d\mathbf{x}$$

where R denotes the rejection region of the test (i.e., R is the set of x such that the p-value is less than α)

