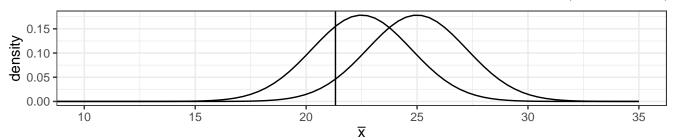
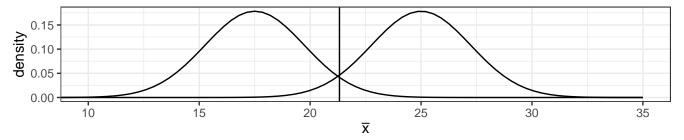

Warm Up: Power Functions for Hypothesis Tests

- Data Model: $X_1, \ldots, X_5 \stackrel{\text{i.i.d.}}{\sim} \operatorname{Normal}(\theta, 5^2)$
- We saw that the likelihood ratio test is *equivalent* to a test based on \bar{x} . The p-value is $P(\bar{X} \leq \bar{x}|\theta = 25)$ ("extreme" values of \bar{x} are those that are at least as small as \bar{x})
- The power of the test is $P(\text{reject } H_0 | H_0 \text{ incorrect})$


1. Consider a test of the hypotheses $H_0: \theta = 25$ vs. $H_A: \theta = 20$. Below is a picture showing the pdf $f_{\bar{X}|\theta}(\bar{x}|20)$ of a Normal $(20, 5^2/5)$ distribution and the pdf $f_{\bar{X}|\theta}(\bar{x}|25)$ of a Normal $(25, 5^2/5)$ distribution, along with a vertical line at q_5^{null} , the 5th percentile of the Normal $(25, 5^2/5)$ distribution.

- Shade in the area corresponding to 1β , the power of the likelihood ratio test if H_A is correct.
- Show how you would calculate the power of the test as an integral of either $f_{\bar{X}|\theta}(\bar{x}|20)$ or $f_{\bar{X}|\theta}(\bar{x}|25)$


2. Suppose that instead we were testing the hypotheses $H_0: \theta = 25$ vs. $H_A: \theta = 22.5$. Below is a picture showing the pdf $f_{\bar{X}|\theta}(\bar{x}|22.5)$ of a Normal $(22.5, 5^2/5)$ distribution and the pdf $f_{\bar{X}|\theta}(\bar{x}|25)$ of a Normal $(25, 5^2/5)$ distribution, along with a vertical line at q_5^{null} , the 5th percentile of the Normal $(25, 5^2/5)$ distribution.

- Shade in the area corresponding to 1β , the power of the likelihood ratio test if H_A is correct.
- Show how you would calculate the power of the test as an integral of either $f_{\bar{X}|\theta}(\bar{x}|22.5)$ or $f_{\bar{X}|\theta}(\bar{x}|25)$

3. Suppose that instead we were testing the hypotheses $H_0: \theta = 25$ vs. $H_A: \theta = 17.5$. Below is a picture showing the pdf $f_{\bar{X}|\theta}(\bar{x}|17.5)$ of a Normal $(17.5, 5^2/5)$ distribution and the pdf $f_{\bar{X}|\theta}(\bar{x}|25)$ of a Normal $(25, 5^2/5)$ distribution, along with a vertical line at q_5^{null} , the 5th percentile of the Normal $(25, 5^2/5)$ distribution.

- Shade in the area corresponding to 1β , the power of the likelihood ratio test if H_A is correct.
- Show how you would calculate the power of the test as an integral of either $f_{\bar{X}|\theta}(\bar{x}|17.5)$ or $f_{\bar{X}|\theta}(\bar{x}|25)$

4. For which of the alternative hypotheses above ($\theta = 17.5$, $\theta = 20$, or $\theta = 22.5$) is the power of the test largest? For which is the power smallest?