Bootstrap Confidence Intervals

Key ideas from last class

Algorithm:

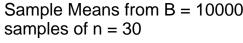
- 1. For b = 1, ..., B:
 - a. Draw a bootstrap sample of size n with replacement from the observed data
 - b. Calculate the estimate $\hat{\theta}_b$ based on that bootstrap sample (a number)
- 2. The distribution of estimates $\{\hat{\theta}_1, \dots, \hat{\theta}_B\}$ from different bootstrap samples approximates the sampling distribution of the estimator $\hat{\Theta}$ (the random variable).

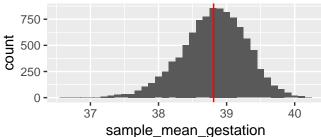
Notation:

- θ is the unknown parameter to estimate
- $\hat{\theta}$ is the estimate from our sample
- $\hat{\theta}_b$ is the estimate from bootstrap resample number b

Compare the approximations from sampling directly from the population and from bootstrap resampling:

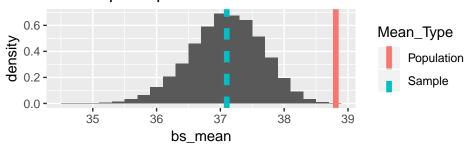
Many means, based on samples from the population:





Many means, based on bootstrap resamples with replacement from the sample:

Sample means from 10000 bootstrap samples



- The relationship of $\hat{\theta}$ to θ is like the relationship of $\hat{\theta}_b$ to $\hat{\theta}$:
 - Bootstrap distribution **reproduces shape and bias** of actual sampling distribution
 - Bootstrap distribution does not reproduce mean of actual sampling distribution
 - * E.g., centered at sample mean instead of population mean

Bootstrap applied to pivotal quantity

- We could also do all of the above with a pivotal quantity instead:
 - T is the pivotal quantity (a random variable)
 - t is the value of the pivotal quantity based on our observed sample
 - $-t_b$ is the value of the pivotal quantity based on bootstrap sample number b
 - The distribution of $\{t_1,\ldots,t_B\}$ approximates the distribution of the pivotal quantity.
 - * Since the distribution of a pivotal quantity does not depend on any unknown parameters (like θ), the bootstrap approximation to the disribution of T will generally be located in the correct place.
 - * For example, the mean of the t pivotal quantity $T = \frac{\bar{X} \mu}{SE(\bar{X})}$ is always 0 since \bar{X} is an unbiased estimator of μ . The distribution of T does not depend on μ .

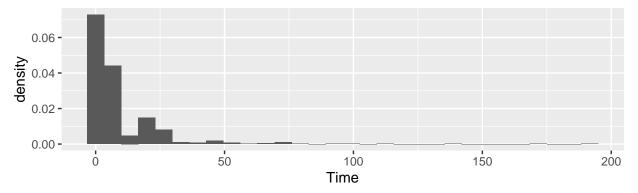
Running Example: Verizon Repair Times

This example is taken from Hesterberg (2014). We have data on the amount of time it took Verizon to repair problems in their telephone lines in the state of New York. They were brought to court, accused of taking longer than their contractual obligation to do repairs. For legal reasons, there was interest in estimating the mean repair time.

```
library(readr)
library(dplyr)
library(ggplot2)

verizon <- read_csv("http://www.evanlray.com/data/chihara_hesterberg/Verizon.csv")
verizon_ilec <- verizon %>%
   filter(Group == "ILEC")

ggplot(data = verizon_ilec, mapping = aes(x = Time)) +
   geom_histogram(mapping = aes(y = ..density..))
```



Based on sample data, the estimate is $\hat{\theta} = 8.412$

```
mean(verizon_ilec$Time)
```

[1] 8.411611

Two approaches to bootstrap confidence intervals (there are many others)

- 1. bootstrap percentile
- 2. bootstrap t
 - a. with standard error from formulas
 - b. using nested bootstrap to estimate standard error

Confidence Interval Idea #1: Bootstrap Percentile CI

Take percentiles of the bootstrap approximation to the sampling distribution of the estimator $\hat{\Theta}$

- If you have seen bootstrap confidence intervals before, this is probably what you have seen.
- Essentially unjustifiable unless sampling distribution is symmetric
- Regardless of no great formal justification, tends to work well for moderate to large sample sizes
- For small n, actual coverage rate \neq nominal coverage rate

```
# sample size
n <- nrow(verizon ilec)</pre>
# how many bootstrap samples to take, and storage space for the results
num_samples <- 10^4</pre>
bs_percentile_results <- data.frame(</pre>
  estimate = rep(NA, num_samples)
# draw many samples from the observed data and calculate mean of each simulated sample
for(i in seq_len(num_samples)) {
  \#\# Draw a bootstrap sample of size n with replacement from the observed data
  bs_sample <- verizon_ilec %>%
    sample_n(size = n, replace = TRUE)
  ## Calculate mean of bootstrap sample
  bs_percentile_results\( estimate[i] <- mean(bs_sample\( Time) \)
}
# 95% Bootstrap Percentile Interval
bs_percentile_interval <- quantile(bs_percentile_results\( estimate, prob = c(0.025, 0.975)))
bs_percentile_interval
##
       2.5%
               97.5%
## 7.717432 9.135773
# Plot
ggplot(data = bs_percentile_results, mapping = aes(x = estimate)) +
  geom_histogram() +
  geom_vline(xintercept = bs_percentile_interval, color = "orange")
  900 -
count
  300 -
    0
                                    8
                                                               9
                                                                                         10
                                             estimate
```

Confidence Interval Idea #2: Bootstrap t

- Based on the pivotal quantity $T = \frac{\hat{\Theta} \theta}{\widehat{SE}(\hat{\Theta})}$.
- If $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} \text{Normal}(\theta, \sigma^2)$ then the exact distribution of T is $T \sim t_{n-1}$. If n is large and regularity conditions are satisfied, the approximate distribution of T is $T \sim \text{Normal}(0, 1)$
- \bullet Otherwise, approximate the sampling distribution of the t statistic using the bootstrap
- How to translate T to bootstrap?

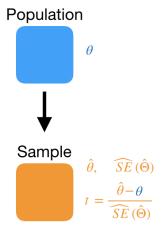
- Algorithm:
- 1. For b = 1, ..., B:
- a. Draw a bootstrap sample of size n with replacement from the observed data
 b. Calculate t_b = ^{θ̂_b-θ̂}/_{SĒ_b(Θ̂)} based on that bootstrap sample
 2. The distribution of {t₁,...,t_B} from different bootstrap samples approximates the sampling distribution of T.
 3. Form a confidence interval as [θ̂ q(1 α/2)SE(Θ̂), θ̂ q(α/2)SE(Θ̂)]
- - $\hat{\theta}$ and $\widehat{SE}(\hat{\Theta})$ are numbers calculated based on original sample data
 - q(a) is the a'th quantile of the bootstrap approximation to the distribution of T.

```
# sample size
n <- nrow(verizon_ilec)</pre>
# how many bootstrap samples to take, and storage space for the results
num_samples <- 10^4</pre>
bs_t_results <- data.frame(</pre>
  t = rep(NA, num_samples)
# draw many samples from the observed data and calculate mean of each simulated sample
for(i in seq_len(num_samples)) {
  ## Draw a bootstrap sample of size n with replacement from the observed data
  bs_sample <- verizon_ilec %>%
    sample_n(size = n, replace = TRUE)
  ## Calculate t statistic based on bootstrap sample
  bs_t_results$t[i] <- (mean(bs_sample$Time) - mean(verizon_ilec$Time)) /
    (sd(bs_sample$Time) / sqrt(n))
}
# 95% Bootstrap t Interval
bs_t_interval <- c(</pre>
  mean(verizon_ilec$Time) -
    quantile(bs_t_results\$t, prob = 0.975) * sd(verizon_ilec\$Time) / sqrt(n),
  mean(verizon_ilec$Time) -
    quantile(bs_t_results$t, prob = 0.025) * sd(verizon_ilec$Time) / sqrt(n)
bs_t_interval
##
      97.5%
                2.5%
## 7.750175 9.193114
# Plot to compare bootstrap estimate of distribution of t statistic to theoretical result
ggplot(data = bs_t_results, mapping = aes(x = t)) +
  geom_histogram(mapping = aes(y = ..density..)) +
  stat_function(fun = dt, args = list(df = n - 1), color = "orange")
  0.4 -
density
0.2 -
0.1 -
  0.0 -
                                                       Ö
```

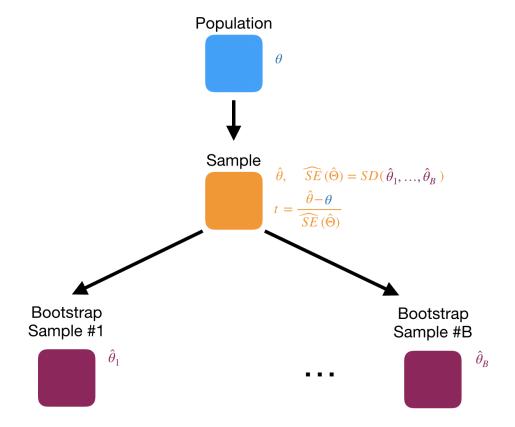
t

Q: What if we didn't have a formula for $\widehat{SE}(\hat{\Theta})$?

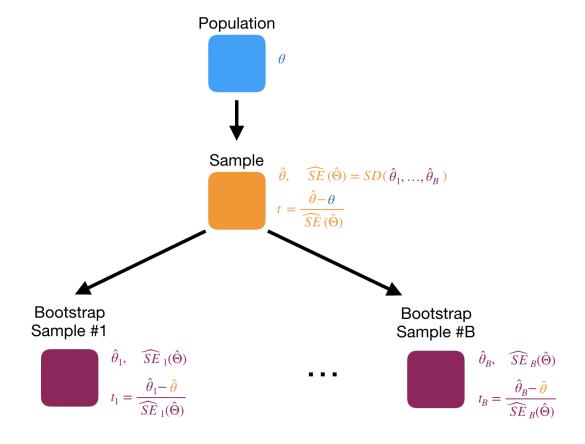
• Suppose we wanted to calculate $t=\frac{\hat{\theta}-\theta}{\widehat{SE}(\hat{\Theta})}$ based on our original sample.



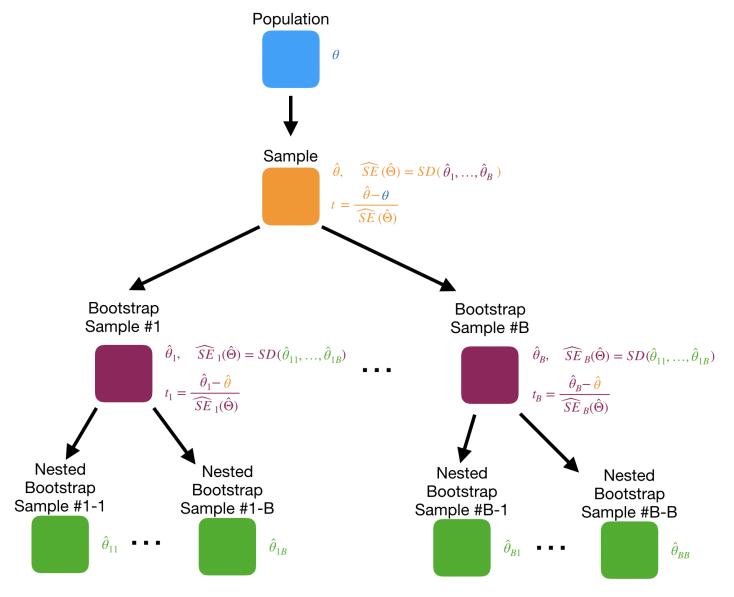
• Here's how we could do that, using a bootstrap to obtain $\widehat{SE}(\hat{\Theta})$:



- Now suppose we want to calculate bootstrap estimate of the sampling distribution of $T = \frac{\hat{\Theta} \theta}{\widehat{SE}(\hat{\Theta})}$
- We need to calculate t_1, \dots, t_B based on B bootstrap samples



- But to calculate t_b , we must replicate the full process tnat would have been used to calculate t for the original sample.
- This means we need to obtain a bootstrap estimate $SE_b(\hat{\Theta})$ within the processing of bootstrap sample b!



Here's a statement of our full algorithm (omitting pre-allocation of storage space for clarity, though that is an important implementation detail to keep it from being too slow in R):

- 1. For b = 1, ..., B
 - i. Draw a bootstrap sample from the original data, with replacement
 - ii. For j = 1, ..., B
 - a. Draw a bootstrap sample from the bootstrap sample obtained in step 1 i, with replacement
 - b. Calculate $\hat{\theta}_{bj}$ based on the bootstrap sample from step 1 ii a iii. Calculate $\widehat{SE}_b(\hat{\Theta}) = \sqrt{\frac{1}{B-1}\sum_{j=1}^B (\hat{\theta}_{bj} \frac{1}{B}\sum_{k=1}^B \hat{\theta}_{bk})^2}$
 - iv. Calculate $\hat{\theta}_b$ based on the bootstrap sample from step 3 i
 - v. Calculate $t_b = \frac{\hat{\theta}_b \hat{\theta}}{SE(\hat{\theta}_b)}$
- 2. Calculate $\widehat{SE}(\hat{\Theta}) = \sqrt{\frac{1}{B-1} \sum_{b=1}^{B} (\hat{\theta}_b \frac{1}{B} \sum_{k=1}^{B} \hat{\theta}_k)^2}$
- 3. Calculate $\hat{\theta}$ based on the original observed data
- 4. Calculate the confidence interval as $[\hat{\theta} q(1 \frac{\alpha}{2})SE(\hat{\theta}), \hat{\theta} q(\frac{\alpha}{2})SE(\hat{\theta})]$, where $q(1 \frac{\alpha}{2})$ and $q(\frac{\alpha}{2})$ are quantiles of the bootstrap estimate of the sampling distribution of the t statistic obtained in step 1, $\hat{\theta}$ was computed in step 2, and $SE(\hat{\theta})$ was computed in step 4.

This is really really slow.

```
# sample size
n <- nrow(verizon_ilec)</pre>
# how many bootstrap samples to take, and storage space for the results
num_samples <- 10^3</pre>
bs_results <- data.frame(</pre>
  t = rep(NA, num_samples),
  theta_hat = rep(NA, num_samples)
)
num_inner_samples <- 10^3 # fewer to make this take an achievable amount of time
inner_bs_se_results <- data.frame(</pre>
  theta = rep(NA, num_inner_samples)
)
# Step 1
for(b in seq_len(num_samples)) {
  # Step 1 i: Draw a bootstrap sample of size n with replacement from the observed data
  bs_sample <- verizon_ilec %>%
    sample_n(size = n, replace = TRUE)
  \# Step 1 ii: Use a nested bootstrap to estimate SE(\hat t_b), based on this bootstrap sample
  for(j in seq_len(num_inner_samples)) {
    # Step 1 ii a
    inner_bs_sample <- bs_sample %>%
      sample_n(size = n, replace = TRUE)
    # Step 1 ii b
    inner_bs_se_results$theta[j] <- mean(inner_bs_sample$Time)</pre>
  }
  # Step 1 iii
  bs_se <- sd(inner_bs_se_results$theta)
  # step 1 iv: Calculate theta hat based on bootstrap sample
  bs_results$theta_hat[b] <- mean(bs_sample$Time)</pre>
  # Step 1 v: Calculate t statistic based on bootstrap sample
  bs_results$t[b] <- (mean(bs_sample$Time) - mean(verizon_ilec$Time)) / bs_se
# Step 2: Calculate bootstrap standard error based on "outer" bootstrap samples
bs_se <- sd(bs_results$theta_hat)</pre>
# Step 3: Calculate theta hat based on original sample
theta_hat <- mean(verizon_ilec$Time)</pre>
# Step 4: Calculate 95% Bootstrap t Interval
bs_t_interval <- c(</pre>
  theta_hat - quantile(bs_t_results$t, prob = 0.975) * bs_se,
  theta_hat - quantile(bs_t_results\$t, prob = 0.025) * bs_se
)
bs_t_interval
##
      97.5%
                2.5%
```

7.753299 9.189423