
Newton Raphson for
Optimization
Evan L. Ray

February 3, 2020



Poisson Model Example

Example A in Section 8.4 of Rice

The National Institute of Science and Technology did a study where they wanted to develop
measurement standards for asbestos concentration. Asbestos dissolved in water was spread
on a filter, and 3-mm diameter punches were taken from the filter and mounted on a
transmission electron microscope. An operator counted the number of fibers in each of 23
grid squares. For the sake of illustration I am using just the first 5 observations here.

Let  be the number of fibers of asbestos found in square number .

Model: 

Xi i

, … , Poisson(λ)X1 Xn ∼
iid
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Log-likelihood and its derivatives

We saw previously that 

In our example, 

(This means we really don’t need numerical maximization methods for this example – I’m
using this example so that we can check that the estimation worked by comparing to what
we know to be the correct answer.)
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Log-likelihood function, MLE

The vertical orange line is at the MLE:

…But what if we couldn’t solve for the MLE directly?

maximizes log-likelihood function

at a root (0) of the first derivative of the log-likelihood function

·

·
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Maximize Taylor Approx. to 

Pick a value . The second-order Taylor Series approximation to  around 
is

If ,  is maximized when its first derivative is 0:

 

This will be our updated estimate, 

Now repeat, but centering the Taylor Series approximation at .
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Find Root of Taylor Approx. to 

Pick a value . The first-order Taylor Series approximation to  around 
is

The root of  is at 

This will be our updated estimate, 

Now repeat, but centering the Taylor Series approximation at .
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Pick λ0

Often the initial value of  is selected by the method of moments

For this example, I picked a number arbitrarily

· λ0

·

= 12λ0
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Approximate  around , get ℓ(λ) λ0 λ1

= 12,  = − = 18.375λ0 λ1 λ0
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Approximate  around , get ℓ(λ) λ1 λ2

= 12, = 18.375,λ0 λ1

= − = 23.561λ2 λ1
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Approximate  around , get ℓ(λ) λ2 λ3

= 12, = 18.375, = 23.561λ0 λ1 λ2

= − = 25.438λ3 λ2
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Approximate  around , get ℓ(λ) λ3 λ4

= 12, = 18.375, = 23.561, = 25.438λ0 λ1 λ2 λ3

= − = 25.599λ4 λ3
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