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Poisson Model Example

Example A in Section 8.4 of Rice

The National Institute of Science and Technology did a study where they wanted to develop
measurement standards for asbestos concentration. Asbestos dissolved in water was spread
on a filter, and 3-mm diameter punches were taken from the filter and mounted on a
transmission electron microscope. An operator counted the number of fibers in each of 23
grid squares. For the sake of illustration | am using just the first 5 observations here.

Let X; be the number of fibers of asbestos found in square number i.

Model: X1, ..., Xnirifa1 Poisson(4)
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Log-likelihood and its derivatives
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We saw previously that Ay p = % 2?21 X;

In our example, Ay g = 25.6
(This means we really don’t need numerical maximization methods for this example - I'm

using this example so that we can check that the estimation worked by comparing to what
we know to be the correct answer.)
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Log-likelihood function, MLE
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The vertical orange line is at the MLE:
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- at a root (0) of the first derivative of the log-likelihood function

...But what if we couldn't solve for the MLE directly?
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Maximize Taylor Approx.to £ (1)

Pick a value 4. The second-order Taylor Series approximation to £ (4|xy, ..., x,,) around Ag

is
d
Py(A) = €(Aolx1, ... s x0) + af(/10|xla R (V1))
1 d? 5
+ Eﬁfu()lxl’ axn)(/l_AO)

2
If 571,”(/10 |x1, ..., x,) <0, Py is maximized when its first derivative is 0:

2
0= 3P(A) = G CQolxt, o x) + 560 x1, .o, X)(A = o)

é%t«ﬂolxlr.”xn)

=> A=A —

d2

This will be our updated estimate, 4;

Now repeat, but centering the Taylor Series approximation at 4; .
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Find Root of Taylor Approx. to d% (1)

Pick a value 4. The first-order Taylor Series approximation to %f(/llxl , ... » Xp) around Ag
is

d d?
Pi(A) = EL(;tlela cos X)) Wf(/%lxl, <5 X)) (A = o)

L Lo lx1se -, )
Therootof P{()isatA = Ay — -% b

d2
dj’_zL(ﬂo |.X]" . -,Xn)

This will be our updated estimate, 4,

Now repeat, but centering the Taylor Series approximation at 4;.
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Pick Ag

Often the initial value of A is selected by the method of moments

For this example, | picked a number arbitrarily
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Approximate £ (1) around A, get 4;
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Approximate £ (1) around 41, get A,
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Approximate £ (1) around 4,, get A3
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Approximate £ (1) around 43, get A4
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Ao = 12, Ay = 18.375, 4, = 23.561, A3 = 25.438
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