
Problem Set 3: Written Part
Your Name Goes Here

Details

How to Write Up

The written part of this assignment can be either typeset using latex or hand written.

Grading

5% of your grade on this assignment is for turning in something legible. This means it should be organized, and any Rmd
files should knit to pdf without issue.

An additional 15% of your grade is for completion. A quick pass will be made to ensure that you’ve made a reasonable
attempt at all problems.

Across both the written part and the R part, in the range of 1 to 3 problems will be graded more carefully for correctness.
In grading these problems, an emphasis will be placed on full explanations of your thought process. You don’t need to
write more than a few sentences for any given problem, but you should write complete sentences! Understanding and
explaining the reasons behind what you are doing is at least as important as solving the problems correctly.

Solutions to all problems will be provided.

Collaboration

You are allowed to work with others on this assignment, but you must complete and submit your own write up. You should
not copy large blocks of code or written text from another student.

Sources

You may refer to our text, Wikipedia, and other online sources. All sources you refer to must be cited.

Problem I: M&M’s Example: Bias, Variance, Efficiency, and MSE of max-
imum likelihood estimator and Bayesian posterior mean

In lab 6, we estimated the proportion of M&M’s that are blue, θ, based on a sample of n M&M’s. We defined the random
variable X, which was the count of how many M&M’s were blue in the sample. Our model was X ∼ Binomial(n, θ).

We have developed two approaches to inference for θ:

1. The maximum likelihood estimator θ̂MLE = X
n . In lecture, we showed that E(θ̂MLE) = θ, V ar(θ̂MLE) = θ(1−θ)

n , and
MSE(θ̂MLE) = θ(1−θ)

n .

2. A Bayesian approach with conjugate prior distribution given by Θ ∼ Beta(a, b). The posterior distribution is given
by Θ|n, x ∼ Beta(a+ x, b+ n− x). From this posterior distribution, we can obtain point estimates, with the most
common choice being the posterior mean, which can be written as follows:

θ̂Bayes = a+ x

(a+ x) + (b+ n− x) = · · · = (1− w) a

a+ b
+ w

x

n
,

where w = n
n+a+b .

By considering what the posterior mean would be across different samples, we can view the posterior mean as specifying
an estimator (replacing the lower case x above by a capital X),
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θ̂Bayes = (1− w) a

a+ b
+ w

X

n
.

In the lab, we considered three different prior specifications for Θ with different level of informativeness, and we saw that
for a large sample size it didn’t matter which prior we used; the resulting estimates were essentially the same as each other
and as the maximum likelihood estimate.

Let’s now look more closely at how the Bayesian and Frequentist methods compare for smaller sample sizes. For concreteness,
let’s work with the intermediate of our three prior specifications, Θ ∼ Beta(2, 8). Let’s also imagine that our sample size is
fixed at 10.

In this case, w = n
n+a+b = 10

10+2+8 = 0.5, and the Bayesian estimator reduces to

θ̂Bayes = (1− w) a

a+ b
+ w

X

n
= 0.5 2

10 + 0.5X10

(1) Find the bias of θ̂Bayes (this will depend on the value of θ).

(2) For what value of θ is θ̂Bayes unbiased? How does that relate to the prior distribution?

(3) Find the variance of θ̂Bayes in terms of θ.

(4) Find an expression for the MSE of θ̂Bayes in terms of θ.

Problem II: Exponential model for hospital waiting times

Let’s revisit an earlier example where we were waiting times for patients at hospital emergency departments. Here is the
problem description from problem set 1:

The National Center for Health Statistics, a division within the U.S. Centers for Disease Control, conducts a nationally
representative survey of hospitals each year to track the waiting times for emergency room visits (that is, how much time
passed between when a patient arrived at the hospital and when they were seen by a doctor or registered nurse). In this
problem, we will model the distribution of waiting times for 1874 emergency department visits from 2012. The output
below shows a plot of the data.
ggplot(data = er_visits, mapping = aes(x = wait_time)) +

geom_density()
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An exponential distribution is often used to model waiting times. Suppose we adopt the data model

Xi
i.i.d.∼ Exponential(λ), i = 1, . . . , n,

where Xi is the waiting time for visit number i. In our data set we have observed values x1, . . . , xn, where n = 1874.

We will use the parameterization of the Exponential distribution given on the common probability distributions handout:
fXi|Λ(xi|λ) = λe−λxi
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(1) Show that the Gamma distribution is a conjugate prior for the parameter λ. State the posterior
distribution and all of its parameters.

If we use the prior Λ ∼ Gamma(α, β), then Λ has pdf fΛ(λ) = βα

Γ(α)λ
α−1e−βλ

(2) Consider the three Gamma distribution probability density functions in the plot below. Which one
would be most appropriate for use as a prior distribution by an analyst who did not know much about
emergency room waiting times? Explain your answer in a sentence or two.
beta1 <- 1
alpha1 <- 1

beta2 <- 10
alpha2 <- 10

beta3 <- 0.1
alpha3 <- 1

ggplot(data = data.frame(x = c(0, 10)), mapping = aes(x = x)) +
stat_function(fun = dgamma, args = list(rate = beta1, shape = alpha1)) +
stat_function(fun = dgamma, args = list(rate = beta2, shape = alpha2), color = "orange") +
stat_function(fun = dgamma, args = list(rate = beta3, shape = alpha3), color = "cornflowerblue") +
theme_bw()
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Problem III: Multinomial model for Jane Austen word usage

Background on Multinomial distribution

The multinomial distribution is a distribution for a random vector X = (X1, X2, . . . , Xk) (a single observation from the
multinomial distribution is a vector of length k).

Suppose X ∼ Multinomial(n, θ), where θ = (θ1, θ2, . . . , θk).
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X = (X1, X2, . . . , Xk) is a vector of counts for how many observations fell into each of k categories in n independent trials
where the item sampled in each trial falls into category j with probability θj . More concretely, imagine rolling a weighted
die with k sides n times, and on each roll, side j comes up with probability θj . The vector X records how many times each
face of the die came up. (Note that since exactly one side of the die must come up on each roll, we must have

∑k
j=1 θj = 1.)

The probability mass function of X is

fX(x|θ) = n!
x1!x2!···xk!θ

x1
1 θx2

2 · · · θ
xk
k

Background on Dirichlet distribution

The Dirichlet distribution is a distribution on a vector of probabilities that sum to 1, such as the probabilities for each side
of the die coming up in the multinomial distribution. Its parameters are a vector α = (α1, α2, . . . , αk).

If Θ = (Θ1, . . . ,Θk) are jointly distributed as Dirichlet(α1, α2, . . . , αk), then the joint pdf of Θ is given by:

fΘ(θ) = 1
B(α)

∏k
j=1 θ

αj−1
j

Here, B(α) is a complicated function of α that’s just there to ensure that the joint pdf of Θ integrates to 1.

Problem set up

This problem has been adapted (heavily) from problem 13.9 in Rice. Note that I think this is not actually the way I would
analyze these data, but it’s still an interesting example to think about. Here’s a quote from Rice:

When Jane Austin died, she left the novel Sanditon only partially completed, but she left a summary of the
remainder. A highly literate admirer finshed the novel, attempting to emulate Austen’s style, and the hybrid
was published. Morton (1978) counted the occurrences of various words in several works: Chapters 1 and 3 of
Sense and Sensibility, Chapters 1, 2, and 4 of Emma, Chapters 1 and 6 of Sanditon (written by Austen), and
Chapters 12 and 24 of Sanditon (written by her admirer).

Problem 13.9 in the book says:

This problem considers some more data on Jane Austen and her imitator (Morton 1978). The following table
gives the relative frequency of the word a preceded by (PB) and not preceded by (NPB) the word such, the
word and followed by (FB) and not followed by (NFB) the word I, and the word the preceded by and not
preceded by on. [I have added column totals.]

To simplify this problem, we will examine only the uses of these phrases in the two sections of Sanditon.

Words Austen Imitator
a PB such 8 2
a NPB such 93 81
and FB I 12 1
and NFB I 139 153
the PB on 8 17
the NPB on 221 204
Total 481 458

The idea of this analysis is to treat the phrase counts in each part of the book as a realization of a multinomial random vector
with unknown cell probabilities specific to that author and a known total count. For example, the vector of phrase counts
for the part of Sanditon written by Jane Austen, (8, 93, 12, 139, 8, 221), is modeled as a realization of a multinomial random
variable with size n = 481 and unknown probability vector θAusten = (θAusten1 , θAusten2 , θAusten3 , θAusten4 , θAusten5 , θAusten6 ).
You might think of this vector as representing Austen’s relative preference for each of the six word constructions in the table.
Similarly, there is a second vector θImitator = (θImitator1 , θImitator2 , θImitator3 , θImitator4 , θImitator5 , θImitator6 ) representing the
imitator’s relative preference for each of the word constructions in the table.

4



(1) Suppose that we have a single observation X = (X1, X2, . . . , Xk) ∼Multinomial(n, θ1, θ2, . . . , θk). That is,
we will observe a vector of counts from each of the k possible categories in n trials. Show that the Dirichlet
is a conjugate prior for the multinomial model. State the posterior distribution and all of its parameters.

(2) Suppose a Dirichlet(1, 1, 1, 1, 1, 1) prior is adopted for each of the unknown parameter vectors θAusten =
(θAusten1 , θAusten2 , θAusten3 , θAusten4 , θAusten5 , θAusten6 ) and θImitator = (θImitator1 , θImitator2 , θImitator3 , θImitator4 , θImitator5 , θImitator6 )
described above. What are the posterior distributions? Give all parameters for the posterior distributions.
There will be two separate posteriors, one for each of the parameter vectors.

(3) Find the marginal posteriors for each of the 12 individual parameters θAusten1 , θAusten2 , θAusten3 , θAusten4 ,
θAusten5 , θAusten6 , θImitator1 , θImitator2 , θImitator3 , θImitator4 , θImitator5 , and θImitator6 .

To do this, use the fact that if Θ ∼ Dirichlet(α1, α2, . . . , αk), then the marginal distribution of Θi is Θi ∼ Beta(αi,
∑k
j=1 αj−

αi). We are doing this because it’s hard to visualize and think about a joint distribution for a vector of 6 parameters, but
it’s easier to think about the marginal distribution for each θj .

Problem IV: Bias

Is the following claim true or false? Justify your answer in a sentence or two.

If two estimators are unbiased, they are equally good and it does not matter which one you use.

Problem V: Bayes Intuition

Write a couple of paragraphs explaining what a prior distribution is, what a posterior distribution is, and how Bayes’ rule
gets us from one to the other. You should include a formula for Bayes’ Rule and some written sentences describing
what’s happening in the formulas. Your first paragraph should explain these ideas in a general setting, and your
second paragraph should illustrate them in the context of a specific example such as estimating the proportion of M&Ms
that are blue based on a sample of n M&Ms (you can pick a different example if you prefer). For the purpose of this
assignment, a paragraph consists of at least three complete sentences.

This problem will be graded by Evan, and you will have an opportunity to submit a revision to your answer for up to full
credit after receiving feedback.

I will post a solution for this problem after everyone has had a chance to submit a revision. In the meantime, I’m happy to
discuss in person.
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