
Calculus for Stat 343

Pre-Calculus

Sums

You can factor anything that doesn’t depend on the summation index out of a sum:

n∑
i=1

cxi = (cx1 + cx2 + · · ·+ cxn) = c(x1 + x2 + · · ·+ xn) = c

n∑
i=1

xi

Products

You can factor anything that doesn’t depend on the product index out of a product, but you have to raise it to the power
of the number of terms in the product:

n∏
i=1

cxi = (cx1)(cx2) · · · (cxn) = cn
n∏

i=1
xi

Logarithms and Exponents

a, b, and c are real numbers, e ≈ 2.718281828459 is Euler’s number.

log(a) is defined to be the number to which you raise e in order to get a: elog(a) = a.

log(e) = 1

log(ab) = log(a) + log(b)

log(ab) = b log(a)

log(a/b) = log(a)− log(b)

ab · ac = ab+c

Gamma Function

The Gamma (Γ) function is basically a continuous version of the factorial. If a is an integer, then

Γ(a) = (a− 1)!

If a is a real number, the Γ function is still defined, and it’s basically a smooth interpolation between the factorials of
nearby integers. There’s a way to define the Γ function as an integral, but we won’t need to know that.
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Differential Calculus in One Variable

Chain rule:

Suppose f and g are functions, and define h by h(x) = f(g(x)). Then h′(x) = f ′(g(x)) · g′(x)

Derivative of a polynomial:

If a 6= 0 then d
dx xa = axa−1

Two special cases that come up a lot are a = −1 and a = −2:

If a = −1 then d
dx

1
x = d

dx x−1 = −1x−2 = −1
x2

If a = −2 then d
dx

1
x2 = d

dx x−2 = −2x−3 = −2
x3

Derivative of an exponential:

d
dx ex = ex

In combination with the chain rule, we get
d

dx ef(x) = ef(x)f ′(x)

Derivative of a logarithm:

d
dx log(x) = 1

x

In combination with the chain rule, we get
d

dx log(f(x)) = 1
f(x) f ′(x)

Finding maximum and minimum of a function

To find a maximum or minimum of a function f(x), we can often use this procedure:

1. Find a critical point x∗ by setting the first derivative to 0 and solving for x.
2. Verify that the critical point is a maximum or minimum; in this class, we will typically use the second derivative test

to do this:
1. If f ′′(x∗) > 0 (at the critical point), the critical point is a local minimum of f
2. If f ′′(x) > 0 (at all values of x), the critical point is a global minimum of f
3. If f ′′(x∗) < 0 (at the critical point), the critical point is a local maximum of f
4. If f ′′(x) < 0 (at all values of x), the critical point is a global maximum of f

Let’s illustrate by finding an extreme point of the function f(x) = 3x2 − 12x + 14 and seeing whether it is a local or global
minimum or maximum.

Step 1: Find a critical point

d

dx
f(x) = d

dx
3x2 − 12x + 14 = 6x− 12 = 0

Solving for x, we find that x∗ = 2 is a critical point.

Step 2: Determine whether the critical point is a maximum or minimum, and whether it is local or global

d2

dx2 f(x) = d2

dx2 3x2 − 12x + 14 = d

dx
6x− 12 = 6

Since the second derivative is positive for all values of x, the critical point x∗ = 2 is a global minimum of f . Here’s a
picture:
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library(ggplot2)
f <- function(x) {

3*x^2 - 12*x + 14
}

ggplot(data = data.frame(x = c(-5, 9)), mapping = aes(x = x)) +
stat_function(fun = f) +
geom_vline(xintercept = 2)
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Taylor’s Theorem

I adapted this statement of Taylor’s theorem from Wikipedia: https://en.wikipedia.org/wiki/Taylor%27s_theorem#Taylor’
s_theorem_in_one_real_variable

Let k ≥ 1 be an integer and suppose that the function f : R→ R is k times differentiable at the point a ∈ R. Define the
k-th order polynomial approximation to f centered at a by

Pk(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2 + · · ·+ f(k)(a)

k! (x− a)k

Then there exists a function hk : R→ R such that:

• f(x) = Pk(x) + hk(x)(x− a)k and

• limx→a hk(x) = 0

(You can get more specific about what the function hk looks like and rates of convergence to 0, but we don’t need to do
that.)

The main points are:

1. For values of x near a, the function f(x) can be well approximated by a polynomial, and the polynomial’s coefficients
can be obtained by the derivatives of f .

2. The approximation is better if you use a higher degree polynomial.
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As an example, let’s approximate f(x) = e5x by a second-order Taylor polynomial centered at a = 1. We will need the first
and second derivatives of f(x):

d

dx
e5x = e5x · 5

d2

dx2 e5x = d

dx
e5x · 5 = e5x · 25

P2(x) = f(1) + f ′(1)(x− 1) + f ′′(1)
2 (x− 1)2

= e5·1 + 5e5·1(x− 1) + 25e5·1

2 (x− 1)2

The claim is that f(x) looks very similar to P2(x) for values of x near a = 1. Let’s verify with a picture:
library(ggplot2)
f <- function(x) {

exp(5 * x)
}

P_2 <- function(x) {
exp(5) + 5 * exp(5) * (x - 1) + (25 * exp(5)) / 2 * (x - 1)^2

}

temp_df <- data.frame(x = c(0.5, 1.5))
ggplot(data = temp_df, mapping = aes(x =x)) +

stat_function(fun = f) +
stat_function(fun = P_2, color = "orange")
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