Calculus for Stat 343

Pre-Calculus

\mathbf{Sums}

You can factor anything that doesn't depend on the summation index out of a sum:

$$\sum_{i=1}^{n} cx_i = (cx_1 + cx_2 + \dots + cx_n) = c(x_1 + x_2 + \dots + x_n) = c\sum_{i=1}^{n} x_i$$

Products

You can factor anything that doesn't depend on the product index out of a product, but you have to raise it to the power of the number of terms in the product:

$$\prod_{i=1}^{n} cx_{i} = (cx_{1})(cx_{2})\cdots(cx_{n}) = c^{n} \prod_{i=1}^{n} x_{i}$$

Logarithms and Exponents

a, b, and c are real numbers, $e \approx 2.718281828459$ is Euler's number.

 $\log(a)$ is defined to be the number to which you raise e in order to get a: $e^{\log(a)} = a$.

log(e) = 1 log(ab) = log(a) + log(b) log(a^b) = b log(a) log(a/b) = log(a) - log(b) $a^b \cdot a^c = a^{b+c}$

Gamma Function

The Gamma (Γ) function is basically a continuous version of the factorial. If a is an integer, then

 $\Gamma(a) = (a-1)!$

If a is a real number, the Γ function is still defined, and it's basically a smooth interpolation between the factorials of nearby integers. There's a way to define the Γ function as an integral, but we won't need to know that.

Differential Calculus in One Variable

Chain rule:

Suppose f and g are functions, and define h by h(x) = f(g(x)). Then $h'(x) = f'(g(x)) \cdot g'(x)$

Derivative of a polynomial:

If $a \neq 0$ then $\frac{d}{dx}x^a = ax^{a-1}$

Two special cases that come up a lot are a = -1 and a = -2:

If a = -1 then $\frac{d}{dx}\frac{1}{x} = \frac{d}{dx}x^{-1} = -1x^{-2} = \frac{-1}{x^2}$ If a = -2 then $\frac{d}{dx}\frac{1}{x^2} = \frac{d}{dx}x^{-2} = -2x^{-3} = \frac{-2}{x^3}$

Derivative of an exponential:

$$\frac{d}{dx}e^x = e^x$$

In combination with the chain rule, we get $\frac{d}{dx}e^{f(x)} = e^{f(x)}f'(x)$

Derivative of a logarithm:

 $\frac{d}{dx}\log(x) = \frac{1}{x}$ In combination with the chain rule, we get $\frac{d}{dx}\log(f(x)) = \frac{1}{f(x)}f'(x)$

Finding maximum and minimum of a function

To find a maximum or minimum of a function f(x), we can often use this procedure:

- 1. Find a **critical point** x^* by setting the first derivative to 0 and solving for x.
- 2. Verify that the critical point is a maximum or minimum; in this class, we will typically use the second derivative test to do this:
 - 1. If $f''(x^*) > 0$ (at the critical point), the critical point is a **local minimum** of f
 - 2. If f''(x) > 0 (at all values of x), the critical point is a global minimum of f
 - 3. If $f''(x^*) < 0$ (at the critical point), the critical point is a **local maximum** of f
 - 4. If f''(x) < 0 (at all values of x), the critical point is a global maximum of f

Let's illustrate by finding an extreme point of the function $f(x) = 3x^2 - 12x + 14$ and seeing whether it is a local or global minimum or maximum.

Step 1: Find a critical point

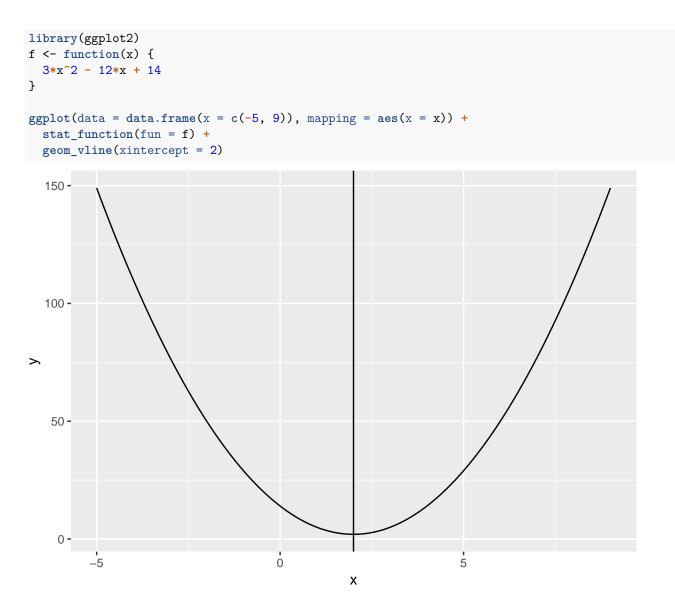
$$\frac{d}{dx}f(x) = \frac{d}{dx}3x^2 - 12x + 14 = 6x - 12 = 0$$

Solving for x, we find that $x^* = 2$ is a critical point.

Step 2: Determine whether the critical point is a maximum or minimum, and whether it is local or global

$$\frac{d^2}{dx^2}f(x) = \frac{d^2}{dx^2}3x^2 - 12x + 14 = \frac{d}{dx}6x - 12 = 6$$

Since the second derivative is positive for all values of x, the critical point $x^* = 2$ is a global minimum of f. Here's a picture:



Taylor's Theorem

I adapted this statement of Taylor's theorem from Wikipedia: https://en.wikipedia.org/wiki/Taylor%27s_theorem#Taylor's_theorem_in_one_real_variable

Let $k \ge 1$ be an integer and suppose that the function $f : \mathbb{R} \to \mathbb{R}$ is k times differentiable at the point $a \in \mathbb{R}$. Define the k-th order polynomial approximation to f centered at a by

 $P_k(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(k)}(a)}{k!}(x-a)^k$

Then there exists a function $h_k : \mathbb{R} \to \mathbb{R}$ such that:

- $f(x) = P_k(x) + h_k(x)(x-a)^k$ and
- $\lim_{x \to a} h_k(x) = 0$

(You can get more specific about what the function h_k looks like and rates of convergence to 0, but we don't need to do that.)

The main points are:

- 1. For values of x near a, the function f(x) can be well approximated by a polynomial, and the polynomial's coefficients can be obtained by the derivatives of f.
- 2. The approximation is better if you use a higher degree polynomial.

As an example, let's approximate $f(x) = e^{5x}$ by a second-order Taylor polynomial centered at a = 1. We will need the first and second derivatives of f(x):

$$\frac{d}{dx}e^{5x} = e^{5x} \cdot 5$$
$$\frac{d^2}{dx^2}e^{5x} = \frac{d}{dx}e^{5x} \cdot 5 = e^{5x} \cdot 25$$

$$P_2(x) = f(1) + f'(1)(x-1) + \frac{f''(1)}{2}(x-1)^2$$
$$= e^{5 \cdot 1} + 5e^{5 \cdot 1}(x-1) + \frac{25e^{5 \cdot 1}}{2}(x-1)^2$$

The claim is that f(x) looks very similar to $P_2(x)$ for values of x near a = 1. Let's verify with a picture:

