Calculus for Stat 343

Pre-Calculus

Sums

You can factor anything that doesn’t depend on the summation index out of a sum:

Zcxi:(cx1+cx2+-~-+cxn):c(m1 +x2—|—---+xn):cz:ci
i=1 i=1

Products

You can factor anything that doesn’t depend on the product index out of a product, but you have to raise it to the power
of the number of terms in the product:

Hcaﬁi = (cx1)(cxa) - - (cxy) = Hml

Logarithms and Exponents

a, b, and ¢ are real numbers, e ~ 2.718281828459 is Euler’s number.

log(a) is defined to be the number to which you raise e in order to get a: €'°8(®) = q.
e)=1

ab) = log(a) + log(b)

a’) = blog(a)

log(a/b) = log(a) — log(b)

ab .qf = ab-i—c
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Gamma Function

The Gamma (I") function is basically a continuous version of the factorial. If a is an integer, then
I'(a) = (a —1)!

If a is a real number, the I" function is still defined, and it’s basically a smooth interpolation between the factorials of
nearby integers. There’s a way to define the I" function as an integral, but we won’t need to know that.



Differential Calculus in One Variable
Chain rule:

Suppose f and g are functions, and define h by h(z) = f(g(x)). Then h'(x) = f'(g(z)) - ¢'(x)

Derivative of a polynomial:

If a # 0 then %x“ = aqro!

Two special cases that come up a lot are a = —1 and a = —2:
_ d1 _ d,—1_ —2 _ —1
Ifafflthenﬂgfax =—-lz7%= =
_ d 1 _ d, -2 _ -3 _ —2
Ifa——2then%x—2—ﬂm =-2r7° =%

Derivative of an exponential:

d z

d T
dx €

=e
In combination with the chain rule, we get

eI (@) = f @) f1(z)

Derivative of a logarithm:

% log(x) = %

In combination with the chain rule, we get

L 1og(f(2) = 75/ ()

Finding maximum and minimum of a function

To find a maximum or minimum of a function f(z), we can often use this procedure:

1. Find a critical point z* by setting the first derivative to 0 and solving for x.
2. Verify that the critical point is a maximum or minimum; in this class, we will typically use the second derivative test
to do this:
1. If f”(z*) > 0 (at the critical point), the critical point is a local minimum of f
2. If f”(x) > 0 (at all values of z), the critical point is a global minimum of f
3. If f”(x*) < 0 (at the critical point), the critical point is a local maximum of f
4. If f(z) < 0 (at all values of x), the critical point is a global maximum of f

Let’s illustrate by finding an extreme point of the function f(z) = 32% — 12z + 14 and seeing whether it is a local or global
minimum or maximum.

Step 1: Find a critical point

d
—f(x):%3332—12334—14:63:—12:0

Solving for x, we find that * = 2 is a critical point.
Step 2: Determine whether the critical point is a maximum or minimum, and whether it is local or global
d? d?

d
_ 2 _ _
—dxzf(:v) =73 32 — 122+ 14 = —dIGx —12=6

Since the second derivative is positive for all values of z, the critical point z* = 2 is a global minimum of f. Here’s a
picture:



library(ggplot2)

f <- function(x) {
3*¥x72 - 12%x + 14

by

ggplot(data = data.frame(x = c(-5, 9)), mapping = aes(x = x)) +
stat_function(fun = f) +
geom_vline(xintercept = 2)
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Taylor’s Theorem

I adapted this statement of Taylor’s theorem from Wikipedia: https://en.wikipedia.org/wiki/Taylor%27s_ theorem#Taylor’
s theorem in one real variable

Let k£ > 1 be an integer and suppose that the function f: R — R is k times differentiable at the point @ € R. Define the
k-th order polynomial approximation to f centered at a by

Pu(a) = £(a) + f(@) (@ — a) + (@ — a)* -+ + L2 (@ — )
Then there exists a function h; : R — R such that:
o f(x) = Pp(x) + hi(z)(x — a)* and
o limg o hg(x) =0
(You)can get more specific about what the function hj looks like and rates of convergence to 0, but we don’t need to do
that.

The main points are:

1. For values of z near a, the function f(z) can be well approximated by a polynomial, and the polynomial’s coefficients
can be obtained by the derivatives of f.
2. The approximation is better if you use a higher degree polynomial.


https://en.wikipedia.org/wiki/Taylor%27s_theorem#Taylor's_theorem_in_one_real_variable
https://en.wikipedia.org/wiki/Taylor%27s_theorem#Taylor's_theorem_in_one_real_variable

As an example, let’s approximate f(x) = e>* by a second-order Taylor polynomial centered at @ = 1. We will need the first
and second derivatives of f(z):

%GSw _ 65z 5
d2 5x d 5z 5z
@e = %6 -bh=e - 25
1"
1
Po@) = £ + £ - 1) + L0 @ -1y
5-1
=St 4 5eSt(x—1) + 25¢ (x —1)?

The claim is that f(z) looks very similar to Py(z) for values of z near a = 1. Let’s verify with a picture:

library(ggplot2)

f <- function(x) {
exp(5 * x)

}

P_2 <- function(x) {
exp(5) + 5 * exp(b) * (x - 1) + (25 * exp(5)) / 2 * (x - 1)72
}

temp_df <- data.frame(x = c(0.5, 1.5))
ggplot(data = temp_df, mapping = aes(x =x)) +
stat_function(fun = f) +

stat_function(fun = P_2, color = "orange")
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