Warm Up: Power Functions for Hypothesis Tests

• Data Model: $X_1, \ldots, X_5 \stackrel{\text{i.i.d.}}{\sim} \operatorname{Normal}(\theta, 5^2)$. We saw that the likelihood ratio test is equivalent to a test based on \bar{x} .

1. Consider a test of the hypotheses $H_0: \theta = 25$ vs. $H_A: \theta = 20$. Below is a picture showing the pdf $f_{\bar{X}|\theta}(\bar{x}|20)$ of a Normal $(20, 5^2/5)$ distribution and the pdf $f_{\bar{X}|\theta}(\bar{x}|25)$ of a Normal $(25, 5^2/5)$ distribution, along with a vertical line at q_5^{null} , the 5th percentile of the Normal $(25, 5^2/5)$ distribution.

- Shade in the area corresponding to 1β , the power of the likelihood ratio test if H_A is correct.
- Show how you would calculate the power of the test as an integral of either $f_{\bar{X}|\theta}(\bar{x}|20)$ or $f_{\bar{X}|\theta}(\bar{x}|25)$

 $1-\beta = \int_{-\infty}^{q_5^{null}} f_{\bar{X}|\theta}(\bar{x}|20) d\bar{x}$

2. Suppose that instead we were testing the hypotheses $H_0: \theta = 25$ vs. $H_A: \theta = 22.5$. Below is a picture showing the pdf $f_{\bar{X}|\theta}(\bar{x}|22.5)$ of a Normal $(22.5, 5^2/5)$ distribution and the pdf $f_{\bar{X}|\theta}(\bar{x}|25)$ of a Normal $(25, 5^2/5)$ distribution, along with a vertical line at q_5^{null} , the 5th percentile of the Normal $(25, 5^2/5)$ distribution.

- Shade in the area corresponding to 1β , the power of the likelihood ratio test if H_A is correct.
- Show how you would calculate the power of the test as an integral of either $f_{\bar{X}|\theta}(\bar{x}|22.5)$ or $f_{\bar{X}|\theta}(\bar{x}|25)$

3. Suppose that instead we were testing the hypotheses $H_0: \theta = 25$ vs. $H_A: \theta = 17.5$. Below is a picture showing the pdf $f_{\bar{X}|\theta}(\bar{x}|17.5)$ of a Normal $(17.5, 5^2/5)$ distribution and the pdf $f_{\bar{X}|\theta}(\bar{x}|25)$ of a Normal $(25, 5^2/5)$ distribution, along with a vertical line at q_5^{null} , the 5th percentile of the Normal $(25, 5^2/5)$ distribution.

• Shade in the area corresponding to $1 - \beta$, the power of the likelihood ratio test if H_A is correct.

• Show how you would calculate the power of the test as an integral of either $f_{\bar{X}|\theta}(\bar{x}|17.5)$ or $f_{\bar{X}|\theta}(\bar{x}|25)$

4. For which of the alternative hypotheses above ($\theta = 17.5$, $\theta = 20$, or $\theta = 22.5$) is the power of the test largest? For which is the power smallest?

The power is largest for $\theta = 17.5$ and smallest for $\theta = 22.5$.

Definition: power function

The power function $K(\theta)$ for a test is the power of the test at θ :

 $K(\theta) = \int_{R} f_{\mathbf{X}|\theta}(\mathbf{x}|\theta) d\mathbf{x}$

where R denotes the rejection region of the test (i.e., R is the set of x such that the p-value is less than α)

Definition: Uniformly most powerful test

A test with power function $K(\theta)$ if for any other test with power function $K'(\theta)$, $K(\theta) \ge K'(\theta)$ for all $\theta \in \Omega_0^c$ (i.e., it has at least as large of power as any other test for every possible parameter consistent with the alternative hypothesis).

(Non-) Example

Here is a plot of the power functions of 3 different tests of

```
H_0: \theta = 25 vs. H_A: \theta \neq 25
```

for our running example with $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} \operatorname{Normal}(\theta, 5^2)$.

- Shown in black is the power function for a test that rejects H_0 if $\bar{x} \leq q_{0.025}^{null}$ or $q_{0.975}^{null} \leq \bar{x}$
- Shown in blue is the power function for a test that rejects H_0 if $\bar{x} \leq q_{0.05}^{null}$
- Shown in orange is the power function for a test that rejects H_0 if $q_{0.95}^{null} \leq \bar{x}$

```
calc_power_two_sided <- function(theta) {</pre>
  lower_cutoff <- qnorm(0.025, mean = 25, sd = sqrt(5))
  upper_cutoff <- qnorm(0.975, mean = 25, sd = sqrt(5))
  power <- rep(NA, length(theta))</pre>
  for(i in seq_along(theta)) {
    power[i] <- pnorm(lower_cutoff, mean = theta[i], sd = sqrt(5)) +</pre>
      pnorm(upper_cutoff, mean = theta[i], sd = sqrt(5), lower.tail = FALSE)
  }
  return(power)
}
calc power left side <- function(theta) {</pre>
  lower_cutoff <- qnorm(0.05, mean = 25, sd = sqrt(5))
  power <- rep(NA, length(theta))</pre>
  for(i in seq_along(theta)) {
    power[i] <- pnorm(lower_cutoff, mean = theta[i], sd = sqrt(5))</pre>
  }
  return(power)
}
calc_power_right_side <- function(theta) {</pre>
  upper_cutoff <- qnorm(0.95, mean = 25, sd = sqrt(5))
 power <- rep(NA, length(theta))</pre>
  for(i in seq_along(theta)) {
    power[i] <- pnorm(upper_cutoff, mean = theta[i], sd = sqrt(5), lower.tail = FALSE)</pre>
  }
  return(power)
}
ggplot(data = data.frame(theta = c(0, 50)), mapping = aes(x = theta)) +
  stat_function(fun = calc_power_two_sided) +
  stat_function(fun = calc_power_left_side, color = "cornflowerblue") +
  stat_function(fun = calc_power_right_side, color = "orange") +
```


- By the Neyman-Pearson lemma, the left-sided test (blue) is most powerful for any θ₁ < θ₀
 By the Neyman-Pearson lemma, the right-sided test (orange) is most powerful for any θ₁ > θ₀
- Therefore, there is no test that is uniformly most powerful for a two-sided test about the mean of a normal distribution.