## Warm Up: Motivation for the Neyman-Pearson Lemma

- Data Model:  $X_1, \ldots, X_5 \stackrel{\text{i.i.d.}}{\sim} \operatorname{Normal}(\theta, 5^2)$
- Let's consider a test of the hypotheses  $H_0: \theta = 25$  vs.  $H_A: \theta = 20$
- If  $H_0$  is correct, then  $\bar{X} \sim \text{Normal}(25, 5^2/5)$ . If  $H_A$  is correct, then  $\bar{X} \sim \text{Normal}(20, 5^2/5)$

1. The following pictures can be used to illustrate 3 different tests based on the sampling distribution of  $\bar{X}$ , all with P(Type I Error |  $H_0$  true) = 0.05. For each test,

- Shade in the area corresponding to the probability of a Type I Error (blue)
- Shade in the area corresponding to the power of the test (orange)

Test 1: Reject  $H_0$  if  $\bar{x} \leq 21.322$  (This is the likelihood ratio test: for values of  $\bar{x} \leq 21.322$ , the p-value is  $\leq 0.05$ .)





## 2. Which of the tests above has the highest power?

The likelihood ratio test.

3. For the likelihood ratio test, write down how you would calculate the probability of making a Type I Error and the power of the test as suitable integrals of either  $f_{\bar{X}|\theta}(\bar{x}|20)$  or  $f_{\bar{X}|\theta}(\bar{x}|25)$ . (You will have 1 integral for the probability of a Type I Error and a second for the power of the test.)

 $\begin{aligned} P(\text{Type I Error}|H_0 \text{ correct}) &= \int_{-\infty}^{21.322} f_{\bar{X}|\theta}(\bar{x}|25) d\bar{x} \\ P(\text{Type I Error}|H_0 \text{ correct}) &= \int_{-\infty}^{21.322} f_{\bar{X}|\theta}(\bar{x}|20) d\bar{x} \end{aligned}$