
Warm Up: Motivation for the Neyman-Pearson Lemma
• Data Model: X1, . . . , X5

i.i.d.∼ Normal(θ, 52)

• Let’s consider a test of the hypotheses H0 : θ = 25 vs. HA : θ = 20

• If H0 is correct, then X̄ ∼ Normal(25, 52/5). If HA is correct, then X̄ ∼ Normal(20, 52/5)

1. The following pictures can be used to illustrate 3 different tests based on the sampling distribution of
X̄, all with P(Type I Error | H0 true) = 0.05. For each test,

• Shade in the area corresponding to the probability of a Type I Error (blue)
• Shade in the area corresponding to the power of the test (orange)

Test 1: Reject H0 if x̄ ≤ 21.322 (This is the likelihood ratio test: for values of x̄ ≤ 21.322, the p-value is ≤ 0.05.)
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Test 2: Reject H0 if x̄ ≤ 20.617 or x̄ ≥ 29.383
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Test 3: Reject H0 if 20.617 ≤ x̄ ≤ 21.322 or 28.678 ≤ x̄ ≤ 29.383
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2. Which of the tests above has the highest power?

The likelihood ratio test.

3. For the likelihood ratio test, write down how you would calculate the probability of making a Type
I Error and the power of the test as suitable integrals of either fX̄|θ(x̄|20) or fX̄|θ(x̄|25). (You will have 1
integral for the probability of a Type I Error and a second for the power of the test.)

P (Type I Error|H0 correct) =
∫ 21.322
−∞ fX̄|θ(x̄|25)dx̄

P (Type I Error|H0 correct) =
∫ 21.322
−∞ fX̄|θ(x̄|20)dx̄
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