
Bootstrap Confidence Intervals
Key ideas from last class

Algorithm:

1. For b = 1, . . . , B:
a. Draw a bootstrap sample of size n with replacement from the observed data
b. Calculate the estimate θ̂b based on that bootstrap sample (a number)

2. The distribution of estimates {θ̂1, . . . , θ̂B} from different simulated samples approximates the sampling distribution
of the estimator θ̂ (the random variable).

Notation:

• θ is the unknown parameter to estimate
• θ̂ is the estimate from our sample
• θ̂b is the estimate from boostrap resample number b

Compare the approximations from sampling directly from the population and from bootstrap resampling:

Many means, based on samples from the population:

0

250

500

750

37 38 39 40

sample_mean_gestation

co
un

t

Sample Means from B = 10000
samples of n = 30

Many means, based on bootstrap resamples with replacement from the sample:
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• The relationship of θ̂ to θ is like the relationship of θ̂b to θ̂:
– Bootstrap distribution reproduces shape and bias of actual sampling distribution
– Bootstrap distribution does not reproduce mean of actual sampling distribution

∗ E.g., centered at sample mean instead of population mean
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Verizon Repair Times

This example is taken from Hesterberg (2014). We have data on the amount of time it took Verizon to repair problems in
their telephone lines in the state of New York. They were brought to court, accused of taking longer than their contractual
obligation to do repairs. For legal reasons, there was interest in estimating the mean repair time.
library(readr)
library(dplyr)
library(ggplot2)

verizon <- read_csv("http://www.evanlray.com/data/chihara_hesterberg/Verizon.csv")
verizon_ilec <- verizon %>%

filter(Group == "ILEC")

ggplot(data = verizon_ilec, mapping = aes(x = Time)) +
geom_histogram(mapping = aes(y = ..density..))
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Let’s compare three interval estimates for the mean repair time:

• t, from normal theory (intro stats)
• bootstrap percentile
• bootstrap t

In all cases the estimate is θ̂ = 8.412
mean(verizon_ilec$Time)

## [1] 8.411611
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Confidence Interval Idea #1: Bootstrap Percentile CI

Take the bootstrap sampling distribution and chop off the left and right tails.

• Probably what you have seen previously
• Essentially unjustifiable unless sampling distribution is symmetric
• Regardless of no great formal justification, tends to work well for moderate to large sample sizes
• For small n, actual coverage rate 6= nominal coverage rate

# sample size
n <- nrow(verizon_ilec)

# how many bootstrap samples to take, and storage space for the results
num_samples <- 10^4
bs_percentile_results <- data.frame(

estimate = rep(NA, num_samples)
)

# draw many samples from the observed data and calculate mean of each simulated sample
for(i in seq_len(num_samples)) {

## Draw a bootstrap sample of size n with replacement from the observed data
bs_sample <- verizon_ilec %>%

sample_n(size = n, replace = TRUE)

## Calculate mean of bootstrap sample
bs_percentile_results$estimate[i] <- mean(bs_sample$Time)

}

# 95% Bootstrap Percentile Interval
bs_percentile_interval <- quantile(bs_percentile_results$estimate, prob = c(0.025, 0.975))
bs_percentile_interval

## 2.5% 97.5%
## 7.713295 9.123312

# Plot
ggplot(data = bs_percentile_results, mapping = aes(x = estimate)) +

geom_histogram() +
geom_vline(xintercept = bs_percentile_interval, color = "orange")
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Confidence Interval Idea #2: Bootstrap t

• The t statistic is t = θ̂−θ
SE(θ̂) .

• If X1, . . . , Xn
i.i.d.∼ Normal(θ, σ2) (or similar) then the exact distribution of t can be derived.

• Otherwise, approximate the sampling distribution of the t statistic using the bootstrap
• Algorithm:

1. For b = 1, . . . , B:
a. Draw a bootstrap sample of size n with replacement from the observed data
b. Calculate tb = θ̂b−θ̂

SE(θ̂b) based on that bootstrap sample 2. The distribution of t statistics {t1, . . . , tB} from
different simulated samples approximates the sampling distribution of the t statistic.

2. Form a confidence interval as [θ̂ − q(1− α
2 )SE(θ̂), θ̂ − q(α2 )SE(θ̂)], where q(a) is the a’th quantile of the bootstrap t

distribution.
# sample size
n <- nrow(verizon_ilec)

# how many bootstrap samples to take, and storage space for the results
num_samples <- 10^4
bs_t_results <- data.frame(

t = rep(NA, num_samples)
)

# draw many samples from the observed data and calculate mean of each simulated sample
for(i in seq_len(num_samples)) {

## Draw a bootstrap sample of size n with replacement from the observed data
bs_sample <- verizon_ilec %>%

sample_n(size = n, replace = TRUE)

## Calculate t statistic based on bootstrap sample
bs_t_results$t[i] <- (mean(bs_sample$Time) - mean(verizon_ilec$Time)) /

(sd(bs_sample$Time) / sqrt(n))
}

# 95% Bootstrap t Interval
bs_t_interval <- c(

mean(verizon_ilec$Time) -
quantile(bs_t_results$t, prob = 0.975) * sd(verizon_ilec$Time) / sqrt(n),

mean(verizon_ilec$Time) -
quantile(bs_t_results$t, prob = 0.025) * sd(verizon_ilec$Time) / sqrt(n)

)

bs_t_interval

## 97.5% 2.5%
## 7.750814 9.190865

# Plot to compare bootstrap estimate of distribution of t statistic to theoretical result
ggplot(data = bs_t_results, mapping = aes(x = t)) +

geom_histogram(mapping = aes(y = ..density..)) +
stat_function(fun = dt, args = list(df = n - 1), color = "orange")
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Q: What if we didn’t have a formula for SE(θ̂b)?

A: Bootstrap standard error, nested within the outer bootstrap.

This is really really slow.

Here’s a statement of our full algorithm (omitting pre-allocation of storage space for clarity, though that is an important
implementation detail to keep it from being too slow in R):

1. For b = 1, ..., B1
i. Draw a bootstrap sample from the original data, with replacement
ii. For j = 1, ..., B2

a. Draw a bootstrap sample from the bootstrap sample obtained in step 1 i, with replacement
b. Calculate θ̂j based on the bootstrap sample from step 1 ii a

iii. Calculate SE(θ̂b) =
√

1
B2−1

∑B2
j=1(θ̂j − 1

B2

∑B2
k=1 θ̂k)2

iv. Calculate tb = θ̂b−θ̂
SE(θ̂b)

2. For b = 1, . . . , B3
i. Draw a bootstrap sample from the original data, with replacement
ii. Calculate θ̂b based on the bootstrap sample from step 3 i

3. Calculate SE(θ̂) =
√

1
B3−1

∑B3
b=1(θ̂b − 1

B3

∑B3
c=1 θ̂c)2

4. Calculate θ̂ based on the original observed data
5. Calculate the confidence interval as [θ̂ − q(1− α

2 )SE(θ̂), θ̂ − q(α2 )SE(θ̂)], where q(1− α
2 ) and q(α2 ) are quantiles of

the bootstrap estimate of the sampling distribution of the t statistic obtained in step 1, θ̂ was computed in step 2,
and SE(θ̂) was computed in step 4.

run_time <- system.time({
# sample size
n <- nrow(verizon_ilec)

# how many bootstrap samples to take, and storage space for the results
num_samples <- 10^3
bs_t_results <- data.frame(

t = rep(NA, num_samples)
)

num_inner_samples <- 10^3 # fewer to make this take an achievable amount of time
inner_bs_se_results <- data.frame(

theta = rep(NA, num_inner_samples)
)

# Step 1
for(b in seq_len(num_samples)) {

# Step 1 i: Draw a bootstrap sample of size n with replacement from the observed data
bs_sample <- verizon_ilec %>%

sample_n(size = n, replace = TRUE)

# Step 1 ii: Use a nested bootstrap to estimate SE(\hat{\theta}_b), based on this bootstrap sample
for(j in seq_len(num_inner_samples)) {

# Step 1 ii a
inner_bs_sample <- bs_sample %>%

sample_n(size = n, replace = TRUE)

# Step 1 ii b
inner_bs_se_results$theta[j] <- mean(inner_bs_sample$Time)

}
# Step 1 iii and iv
bs_se <- sd(inner_bs_se_results$theta)

# Step 1 iv: Calculate t statistic based on bootstrap sample
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bs_t_results$t[b] <- (mean(bs_sample$Time) - mean(verizon_ilec$Time)) / bs_se
}

})

# Step 2
bs_se_results <- data.frame(

theta = rep(NA, num_samples)
)
for(b in seq_len(num_samples)) {

# Step 2 i
bs_sample <- verizon_ilec %>%

sample_n(size = n, replace = TRUE)

# Step 2 ii
bs_se_results$theta[b] <- mean(bs_sample$Time)

}
# Step 3
bs_se <- sd(bs_se_results$theta)

# Steps 4 and 5: 95% Bootstrap t Interval
bs_t_interval <- c(

mean(verizon_ilec$Time) -
quantile(bs_t_results$t, prob = 0.975) * bs_se,

mean(verizon_ilec$Time) -
quantile(bs_t_results$t, prob = 0.025) * bs_se

)

bs_t_interval

## 97.5% 2.5%
## 7.739686 9.126088

run_time

## user system elapsed
## 217.224 1.779 220.075
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