Bootstrap Estimation of a Sampling Distribution

Background

e Confidence intervals are derived from the sampling distribution of an estimator like 0 MLE-

e The sampling distribution is the distribution of estimates Orr1E obtained from all possible samples of size n.
e Approaches so far:

— Get exact sampling distribution (not always possible depends on correct model specification):
i.i.d.
* If X1,..., X, ~ Normal(u,0o?) then t = S/f
s If X1,..., X, "~ Normal(y,o?) then % ~X2_4

— If n is large, parameter is not on boundary of parameter space, everything is differentiable, ..., then GMLE
1
Normal(a, W)

e New approach: simulation-based approximation to the sampling distribution

Simulation-based approximation to sampling distribution, if population distribution is known:
1. Forb=1,...,B:
a. Draw a sample of size n from the population/data model
b. Calculate the estimate 6, based on that sample (a number)
2. The distribution of estimates {él, ... ,é p} from different simulated samples approximates the sampling distribution
of the estimator 0 (the random variable).

Example: We have data that contains a record of the gestation time (how many weeks pregnant the mother was when she
gave birth) for the population of every baby born in December 1998 in the United States.

Population: 330,717 babies
mean 38.81 weeks
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e As B — oo, we get a better approximation to the distribution of 0

e Challenge: If we don’t know the population distribution, we can’t simulate samples from the population



Idea:
e Treat the distribution of the data in our sample as an estimate of the population distribution
Suppose we have a sample of 30 babies. How does its distribution compare to the population distribution?

View 1: In terms of histograms (think pdfs):
Population: 330,717 babies
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View 2: In terms of cdfs

Recall that Fx(z) = P(X < z)

) __ # in sample < x

Based on a sample, this is estimated by the empirical cdf: FX(:E -

If n is large, Fx (x) will be a good approximation to Fx (z).
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If Fx(z) (or fx(m)) is a good estimate of Fx(x) (or fx(z)), then a sample drawn from the distribution
specified by Fx(z) will look similar to a sample drawn from Fx (z).

o Instead of repeatedly drawing samples from Fx(z) to approximate the sampling distribution of é, repeatedly draw
samples from Fy ().
 In practice, this means (repeatedly) draw a sample of size n with replacement from our observed data.



1. Forb=1,...,B:
a. Draw a bootstrap sample of size n with replacement from the observed data
b. Calculate the estimate 6, based on that bootstrap sample (a number)
2. The distribution of estimates {61, ...,0p} from different simulated samples approximates the sampling distribution

of the estimator § (the random variable).

Population: 330,717 babies
mean 38.81 weeks
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Take a Sample
(In real life, this is all
we would get to see)

Sample mean: 37.10 weeks
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Compare the approximations from sampling directly from the population and from bootstrap resampling:

Many means, based on samples from the population:

Sample Means from B = 10000
samples of n = 30
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Many means, based on bootstrap resamples with replacement from the sample:

Sample means from 10000
bootstrap samples

- 0.64 Mean_Type

§ 0.4 I Population

% 0.2- 1 Sample
0.0-

bs_mean

e Properties:
— Bootstrap distribution reproduces shape, variance, and bias of actual sampling distribution
— Bootstrap distribution does not reproduce mean of actual sampling distribution
x E.g., centered at sample mean instead of population mean
e Sketch of more formal justification:
— Suppose X1,..., X, are i.i.d. with pdf fx(x)
— Our estimator is a function of X1,..., X,: 0 = g(Xq,..., Xn)
— The sampling distribution of 0 is determined by its cdf
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e The last two lines above involve approximations.

e Note 1: It’s sometimes claimed that the bootstrap can help with small sample sizes; this is FALSE. Second-to-last
equation above is a large-n approximation of fx(x) with f x (). In practice, this is useful for moderate sample sizes.

e Note 2: As long as B =~ 1000 or so, the approximation in the last equation is typically good enough



Example with Poisson data (one last time!)

Recall our Poisson data about asbestos fiber counts:

31, 29, 19, 18, 31, 28, 34, 27, 34, 30, 16, 18, 26, 27, 27, 18, 24, 22, 28, 24, 21, 17, 24
Sample mean: T = 24.9

Model: X; ~ Poisson(\)

The maximum likelihood estimate is \ MmLE =X =24.9

A bootstrap-based estimate of the sampling distribution of MvLe:

# the dplyr package contains the sample_n function,
# which we use below to draw the bootstrap samples
library(dplyr)

# observed data: 23 counts of asbestos fibers
sample_obs <- data.frame(
fiber_count = c(31, 29, 19, 18, 31, 28, 34, 27, 34, 30, 16, 18, 26, 27, 27, 18, 24,
22, 28, 24, 21, 17, 24)

)
# number of observations in sample_obs
n <- 23

# how many bootstrap samples to take, and storage space for the results
num_bootstrap_samples <- 1073
bootstrap_estimates <- data.frame(

estimate = rep(NA, num_bootstrap_samples)

)

# draw many samples from the observed data and calculate mean of each simulated sample
for(i in seq_len(num_bootstrap_samples)) {
## Draw a bootstrap sample of size n with replacement from the observed data
bootstrap_resampled_obs <- sample_obs %>/
sample_n(size = n, replace = TRUE)

## Calculate mean of bootstrap sample
bootstrap_estimates$estimate[i] <- mean(bootstrap_resampled_obs$fiber_count)

}



Plot of bootstrap estimate of sampling distribution

« Note that this is centered at \ MmLE based on our sample, not at the true A — but it should otherwise look similar to
the actual sampling distribution (if we think n = 23 is large enough).
library(ggplot2)
ggplot(data = bootstrap_estimates, mapping = aes(x = estimate)) +
geom_histogram(bins = 30) +
geom_vline(
mapping = aes(xintercept = mean(sample_obs$fiber_count))) +
ggtitle("Parameter Estimates from 1000 Bootstrap Samples")

Parameter Estimates from 1000 Bootstrap Samples
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Bootstrap Estimate of Bias:
Actual bias is E(S\MLE) — A, which we have shown to be 0
Estimate bias by (Average of bootstrap estimates) — (Estimate from our actual sample) = & 37", A®) — Xy

mean(bootstrap_estimates$estimate) - mean(sample_obs$fiber_count)

## [1] 0.01821739
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