
Bootstrap Estimation of a Sampling Distribution
Background

• Confidence intervals are derived from the sampling distribution of an estimator like θ̂MLE .
• The sampling distribution is the distribution of estimates θ̂MLE obtained from all possible samples of size n.
• Approaches so far:

– Get exact sampling distribution (not always possible, depends on correct model specification):
∗ If X1, . . . , Xn

i.i.d.∼ Normal(µ, σ2) then t = X̄−µ
S/
√
n
∼ tn−1

∗ If X1, . . . , Xn
i.i.d.∼ Normal(µ, σ2) then (n−1)S2

σ2 ∼ χ2
n−1

– If n is large, parameter is not on boundary of parameter space, everything is differentiable, . . . , then θ̂MLE ∼
Normal(θ, 1

I(θ̂MLE) )
• New approach: simulation-based approximation to the sampling distribution

Simulation-based approximation to sampling distribution, if population distribution is known:

1. For b = 1, . . . , B:
a. Draw a sample of size n from the population/data model
b. Calculate the estimate θ̂b based on that sample (a number)

2. The distribution of estimates {θ̂1, . . . , θ̂B} from different simulated samples approximates the sampling distribution
of the estimator θ̂ (the random variable).

Example: We have data that contains a record of the gestation time (how many weeks pregnant the mother was when she
gave birth) for the population of every baby born in December 1998 in the United States.

• As B →∞, we get a better approximation to the distribution of θ̂

• Challenge: If we don’t know the population distribution, we can’t simulate samples from the population
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Idea:

• Treat the distribution of the data in our sample as an estimate of the population distribution

Suppose we have a sample of 30 babies. How does its distribution compare to the population distribution?

View 1: In terms of histograms (think pdfs):
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View 2: In terms of cdfs

Recall that FX(x) = P (X ≤ x)

Based on a sample, this is estimated by the empirical cdf : F̂X(x) = # in sample ≤ x
n

If n is large, F̂X(x) will be a good approximation to FX(x).
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If F̂X(x) (or f̂X(x)) is a good estimate of FX(x) (or fX(x)), then a sample drawn from the distribution
specified by F̂X(x) will look similar to a sample drawn from FX(x).

• Instead of repeatedly drawing samples from FX(x) to approximate the sampling distribution of θ̂, repeatedly draw
samples from F̂X(x).

• In practice, this means (repeatedly) draw a sample of size n with replacement from our observed data.
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1. For b = 1, . . . , B:
a. Draw a bootstrap sample of size n with replacement from the observed data
b. Calculate the estimate θ̂b based on that bootstrap sample (a number)

2. The distribution of estimates {θ̂1, . . . , θ̂B} from different simulated samples approximates the sampling distribution
of the estimator θ̂ (the random variable).
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Compare the approximations from sampling directly from the population and from bootstrap resampling:

Many means, based on samples from the population:
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Many means, based on bootstrap resamples with replacement from the sample:
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• Properties:
– Bootstrap distribution reproduces shape, variance, and bias of actual sampling distribution
– Bootstrap distribution does not reproduce mean of actual sampling distribution

∗ E.g., centered at sample mean instead of population mean
• Sketch of more formal justification:

– Suppose X1, . . . , Xn are i.i.d. with pdf fX(x)
– Our estimator is a function of X1, . . . , Xn: θ̂ = g(X1, . . . , Xn)
– The sampling distribution of θ̂ is determined by its cdf

Fθ̂(θ
∗) = P (θ̂ ≤ θ∗)

= P (g(X1, . . . , Xn) ≤ θ∗)

=
∫
· · ·

∫
{x1,...,xn:g(x1,...xn)≤θ∗}

fX(x1) · · · fX(xn)dx1 · · · dxn

=
∫
· · ·

∫
{x1,...,xn}

I(−∞,θ∗]{g(x1, . . . xn)}fX(x1) · · · fX(xn)dx1 · · · dxn

≈
∫
· · ·

∫
x1,...,xn

I(−∞,θ∗]{g(x1, . . . xn)}f̂X(x1) · · · f̂X(xn)dx1 · · · dxn if n is large, f̂X(x) ≈ fX(x)

≈ 1
B

B∑
b=1

I(−∞,θ∗]{g(x(b)
1 , . . . x(b)

n )} Law of Large Numbers, if x(b)
1 , . . . , x(b)

n
i.i.d.∼ f̂X(x)

• The last two lines above involve approximations.
• Note 1: It’s sometimes claimed that the bootstrap can help with small sample sizes; this is FALSE. Second-to-last

equation above is a large-n approximation of fX(x) with f̂X(x). In practice, this is useful for moderate sample sizes.
• Note 2: As long as B ≈ 1000 or so, the approximation in the last equation is typically good enough
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Example with Poisson data (one last time!)

Recall our Poisson data about asbestos fiber counts:

31, 29, 19, 18, 31, 28, 34, 27, 34, 30, 16, 18, 26, 27, 27, 18, 24, 22, 28, 24, 21, 17, 24

Sample mean: x̄ = 24.9

Model: Xi ∼ Poisson(λ)

The maximum likelihood estimate is λ̂MLE = X̄ = 24.9

A bootstrap-based estimate of the sampling distribution of λ̂MLE :
# the dplyr package contains the sample_n function,
# which we use below to draw the bootstrap samples
library(dplyr)

# observed data: 23 counts of asbestos fibers
sample_obs <- data.frame(

fiber_count = c(31, 29, 19, 18, 31, 28, 34, 27, 34, 30, 16, 18, 26, 27, 27, 18, 24,
22, 28, 24, 21, 17, 24)

)
# number of observations in sample_obs
n <- 23

# how many bootstrap samples to take, and storage space for the results
num_bootstrap_samples <- 10^3
bootstrap_estimates <- data.frame(

estimate = rep(NA, num_bootstrap_samples)
)

# draw many samples from the observed data and calculate mean of each simulated sample
for(i in seq_len(num_bootstrap_samples)) {

## Draw a bootstrap sample of size n with replacement from the observed data
bootstrap_resampled_obs <- sample_obs %>%

sample_n(size = n, replace = TRUE)

## Calculate mean of bootstrap sample
bootstrap_estimates$estimate[i] <- mean(bootstrap_resampled_obs$fiber_count)

}
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Plot of bootstrap estimate of sampling distribution

• Note that this is centered at λ̂MLE based on our sample, not at the true λ – but it should otherwise look similar to
the actual sampling distribution (if we think n = 23 is large enough).

library(ggplot2)
ggplot(data = bootstrap_estimates, mapping = aes(x = estimate)) +

geom_histogram(bins = 30) +
geom_vline(

mapping = aes(xintercept = mean(sample_obs$fiber_count))) +
ggtitle("Parameter Estimates from 1000 Bootstrap Samples")
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Parameter Estimates from 1000 Bootstrap Samples

Bootstrap Estimate of Bias:

Actual bias is E(λ̂MLE)− λ, which we have shown to be 0

Estimate bias by (Average of bootstrap estimates)− (Estimate from our actual sample) = 1
B

∑n
i=1 λ̂

(b) − λ̂MLE

mean(bootstrap_estimates$estimate) - mean(sample_obs$fiber_count)

## [1] 0.01821739
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