
Bayesian Inference, Shrinkage Estimators, and MSE

M&M’s Example: Bias, Variance, Efficiency, and MSE of maximum likeli-
hood estimator and Bayesian posterior mean

Set Up

Problem Reminder

In lab 7, we estimated the proportion of M&M’s that are blue, θ, based on a sample of n M&M’s. We defined the random
variable X, which was the count of how many M&M’s were blue in that sample. Our model was X i.i.d.∼ Binomial(n, θ).

We have developed two approaches to inference for θ:

1. The maximum likelihood estimator θ̂MLE = X
n

2. A Bayesian approach with conjugate prior distribution given by Θ ∼ Beta(a, b). The posterior distribution is given
by Θ|n, x ∼ Beta(a+ x, b+ n− x). From this posterior distribution, we can obtain point estimates, with the most
common choice being the posterior mean, which can be written as follows:

θ̂Bayes = a+ x

(a+ x) + (b+ n− x) = · · · = (1− w) a

a+ b
+ w

x

n
,

where w = n
n+a+b .

By considering what the posterior mean would be across different samples, we can view the posterior mean as specifying
an estimator,

θ̂Bayes = (1− w) a

a+ b
+ w

X

n
.

In the previous lab, we considered three different prior specifications for Θ with different level of informativeness, and we
saw that for a large sample size it didn’t matter which prior we used; the resulting estimates were essentially the same as
each other and as the maximum likelihood estimate.

Let’s now look more closely at how the Bayesian and Frequentist methods compare for smaller sample sizes. For concreteness,
let’s work with the intermediate of our three prior specifications, Θ ∼ Beta(2, 8). Let’s also imagine that our sample size is
fixed at 10.

In this case, w = n
n+a+b = 10

10+2+8 = 0.5, and the Bayesian estimator is

θ̂Bayes = (1− w) a

a+ b
+ w

X

n
= 0.5 2

10 + 0.5X10

Properties of θ̂MLE

Find the bias of θ̂MLE
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Find the variance of θ̂MLE in terms of θ

Find an expression for the MSE of θ̂MLE in terms of θ

Find the Fisher information about θ from a sample of size n.

You may use the fact that
d2

dθ2 `(θ|x) = −x
θ2 + −(n− x)

(1− θ)2

Is θ̂MLE an efficient estimator of θ?

Suppose θ̃ is an unbiased estimator of θ. Is it possible that V ar(θ̃) < V ar(θ̂MLE)?
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Properties of θ̂Bayes

Find the bias of θ̂Bayes in terms of θ. For what value of θ is θ̂Bayes unbiased? How does that relate to the
prior distribution?

Find the variance of θ̂Bayes in terms of θ

Find an expression for the MSE of θ̂Bayes in terms of θ

The last part of this lab is on GitHub, Lab 13.
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