Examples for large sample credible intervals

Example 1: Prevalence of Recessive Gene

If gene frequencies are in equilibrium, the genotypes AA, Aa, and aa occur with probabilities (1—6)2, 26(1—6),
and 62 respectively, where 6 represents the overall prevalence of the recessive a gene in the population. Plato
et al. (1964) published the following data on a haptoglobin type in a sample of 190 people:

Haptoglobin Type AA Aa aa
Count 112 68 10

Let’s regard the vector x = (z1,x2,23) = (112,68,10) as a realization of the random variable X ~
Multinomial ((1 — 6)2,260(1 — 6),6?).

To save some time/allow us to focus on the results of interest here, I'll give you the likelihood function, its
first and second derivatives with respect to #, and the form of the posterior:

Preliminary Results

General form of Multinomial pmf
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Likelihood function

In our example, p; = (1 — 0)2, po = 260(1 — 0), and p3 = 62

L(0]x) = f(x]0)
= {(1 = 0)?}"{20(1 — 0)}*2 {67}

I'm going to leave this in terms of x1, x5, and z3 for now.

Log-likelihood function

£(0]x) = log[L(0]x)]
=log [{(1—0)*}{20(1 — 0)}"{6°}"*]
=z log{(1 —0)?} + z210g{20(1 — )} + x31og{6?}

First and second derivatives of log-likelihood function

The first derivative of the log-likelihood is:
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The second derivative of the log-likelihood is:
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Maximum likelihood estimator

Setting the first derivative equal to 0, we obtain a maximum likelihood estimator of
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It can be verified that this gives a global maximum of the likelihood function.

Posterior Distribution
Suppose we adopt a prior of © ~ Uniform(0, 1)
1if 0 € [0,1]

The prior distribution for © has density fo(0) = )
0 otherwise

Additionally, in part (a) we showed that fx|e(x[0) = {(1 —0)*}*1{20(1 — 0)}*2{6?}*.
Applying Bayes’ Rule, we find that

c{(1—0)2}1{20(1 — 0)}*2{p*}*> if € [0, 1]
0 otherwise

f@|x(9|x) == {

The integral is kindof annoying, but can be done.

Problems for you

1. Find a large-sample normal approximation to the posterior distribution for 4.

You should find the numeric values of the mean and variance of this normal approximation based on our data
set.

Mean:

mle <- (68 + 2 * 10)/(2 * 190)
mle

## [1] 0.2315789

Variance:

2112468 _ _2-10468

(1_@MLE)2 (éJMLE)z

second_deriv_loglik <- -(2 * 112 + 68)/(1 - mle)"2 - (2 * 10 + 68)/(mle”2)
post_approx_var <- -1/second_deriv_loglik

post_approx_var

2
%f(@ml, ey xn)‘ezéI\JLE = -

## [1] 0.0004682898

Therefore, the posterior distribution for 6 is approximately Normal(0.232,0.000468)



2. Add a plot of the pdf of the normal approximation to the plot of the actual posterior below.

I used Wolfram Alpha to figure out how to calculate the constant c. That’s the first 4 lines of the calculation
of the log density in the dposterior function below:

library(ggplot2)

dposterior <- function(theta, x_1, x_2, x_3, log = FALSE) {
n<-x1+x2+x3

log_d_posterior <- sum(log(seq_len(2 * n + 1))) -
x_2 * log(2) -
sum(log(seq_len(2 * x_1 + x_2))) -
sum(log(seq_len(x_2 + 2 * x_3))) +
2 * x_1 * log(l - theta) +
x_2 * log(2 * theta * (1 - theta)) +
2 * x_3 * log(theta)

if (log) {
return(log_d_posterior)
} else {
return(exp(log_d_posterior))
}
}
ggplot(data = data.frame(theta = c(0, 1)), mapping = aes(x = theta)) +
stat_function(fun = dposterior, args = list(x_1 = 112, x_2 = 68, x_3 = 10), n = 1001) +
stat_function(fun = dnorm, args = list(mean = 0.232, sd = sqrt(0.000468)), color = "orange")
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3. Find and interpret an approximate Bayesian 95% credible interval for 6 based on the normal
approximation.

gnorm(c(0.025, 0.975), mean = 0.232, sd = sqrt(0.000468))

## [1] 0.1895995 0.2744005

There is probability 0.95 that the overall prevalence of the recessive a gene in the population is between
about 0.19 and 0.27.
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