
Stat 343: MLE for Simple Linear Regression
Introduction

For a variety of reasons, scientists are interested in the relationship between the climate of a region and
characteristics of the plants and animals that live there. For example, this could inform thinking about the
impacts of climate change on natural resources, and could be used by paleontologists to learn about historical
climatological conditions from the fossil record.

In 1979, the US Geological service published a report discussing a variety of characteristics of forests throughout
the world and discussed connections to the climates in those different regions (J. A. Wolfe, 1979, Temperature
parameters of humid to mesic forests of eastern Asia and relation to forests of other regions of the Northern
Hemisphere and Australasia, USGS Professional Paper, 1106). One part of this report discussed the connection
between the temperature of a region and the shapes of tree leaves in the forests in that region. Generally, leaves
can be described as either “serrated” (having a rough edge like a saw blade) or “entire” (having a smooth edge)
- see the picture here: https://en.wikibooks.org/wiki/Historical_Geology/Leaf_shape_and_temperature.
One plot in the report displaysthe relationship between the mean annual temperature in a forested region (in
degrees Celsius) and the percent of leaves in the forest canopy that are “entire”.

I pulled the data out of that plot and put them into the data set that the code below reads in and plots:
library(readr)
library(dplyr)

##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)

leaf <- read_csv("http://www.evanlray.com/data/misc/leaf_margins/leaf_margins.csv")

## Parsed with column specification:
## cols(
## pct_entire_margined = col_double(),
## mean_annual_temp_C = col_double()
## )
head(leaf)

## # A tibble: 6 x 2
## pct_entire_margined mean_annual_temp_C
## <dbl> <dbl>
## 1 86.4 26.8
## 2 82.4 26.9
## 3 81.4 26.4
## 4 82.3 25.8
## 5 77.4 25.8
## 6 76.2 25.3
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ggplot(data = leaf, mapping = aes(x = mean_annual_temp_C, y = pct_entire_margined)) +
geom_point() +
theme_bw()
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Let’s consider a model for the percent of leaves in the forest canopy as a function of the mean annual
temperature in that forest in degrees Celsius.

Notation and Model Statement

We define the following random variables:

Yi = percent of leaves in forest number i that are entire margined, i = 1, . . . , n.

Xi = mean annual temperature in forest number i in degrees Celsius, i = 1, . . . , n.

We specify our model as follows:

(Yi|Xi = xi) = β0 + β1xi + εi

εi
iid∼Normal(0, σ2)

If we condition on the value xi, then β0 + β1xi is just a constant. Therefore, we could equivalently state this
model as follows:

Yi|Xi = xi
iid∼Normal(β0 + β1xi, σ

2)

This is a model for the conditional distribution of the percent of leaves that are entire margined in a particular
forest given the mean annual temperature in that forest.

The model has three parameters β0, β1, and σ2. For today, let’s pretend that σ2 is a known constant, and
focus on estimation of β0 and β1.
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1. Write down the probability density function for Yi|Xi = xi.

f(yi|xi) = (2πσ2)−0.5e

[
−0.5{yi−(β0+β1xi)}2

σ2

]

2. Write down the joint pdf for Y1, . . . , Yn|X1 = x1, . . . , Xn = xn.

f(y1, . . . , yn|x1, . . . , xn) =
n∏
i=1

[
(2πσ2)−0.5e

[
−0.5{yi−(β0+β1xi)}2

σ2

]]

= (2πσ2)−0.5ne

[
−0.5

∑n

i=1
{yi−(β0+β1xi)}2

σ2

]

3. Find the log-likelihood function `(β0, β1, σ
2|x1, y1, . . . , xn, yn)

`(β0, β1|x1, y1, . . . , xn, yn, σ
2) = log{L(β0, β1, σ

2|x1, y1, . . . , xn, yn)}
= log{f(y1, . . . , yn|x1, . . . , xn)}

= log

(2πσ2)−0.5ne

[
−0.5

∑n

i=1
{yi−(β0+β1xi)}2

σ2

]
= log

{
(2πσ2)−0.5n}− 0.5

∑n
i=1 {yi − (β0 + β1xi)}2

σ2

3



4. Find a critical point of the log-likelihood function. This will involve taking the partial
derivatives with respect to each of β0 and β1 and setting the results equal to 0 (remember,
we’re pretending σ is a known constant; if we were trying to estimate that too, we would need
to also differentiate with respect to σ). You will have a system of 2 equations to solve.

You should get answers of the form:

β0 = 1
n

n∑
i=1

yi − β1
1
n

n∑
i=1

xi =
(∑n

i=1 x
2
i

)
(
∑n
i=1 yi)− (

∑n
i=1 xi) (

∑n
i=1 xiyi)

n
∑n
i=1 x

2
i − (

∑n
i=1 xi)

2

β1 =
n
∑n
i=1 xiyi − (

∑n
i=1 xi) (

∑n
i=1 yi)

n
∑n
i=1 x

2
i − (

∑n
i=1 xi)

2

To find a critical point, we need to find the partial derivatives of the log-likelihood with respect to each
parameter, set the results equal to 0, and solve. For the derivative with respect to β0, we have:

0 = ∂

∂β0
`(β0, β1|x1, y1, . . . , xn, yn, σ

2)

= ∂

∂β0

[
log
{

(2πσ2)−0.5n}− 0.5
∑n
i=1 {yi − (β0 + β1xi)}2

σ2

]

= −0.5
σ2

n∑
i=1

2 {yi − (β0 + β1xi)} (−1)

= 1
σ2

n∑
i=1
{yi − (β0 + β1xi)}

⇒ 0 =
n∑
i=1

yi −
n∑
i=1

β0 −
n∑
i=1

β1xi

⇒β0 = 1
n

n∑
i=1

yi − β1
1
n

n∑
i=1

xi (1)

Now we turn to the equation obtained by differentiating with respect to β1:

0 = ∂

∂β1
`(β0, β1|x1, y1, . . . , xn, yn, σ

2)

= ∂

∂β1

[
log
{

(2πσ2)−0.5n}− 0.5
∑n
i=1 {yi − (β0 + β1xi)}2

σ2

]

= −0.5
σ2

n∑
i=1

2 {yi − (β0 + β1xi)} (−xi)

= 1
σ2

n∑
i=1

{
yixi − (β0xi + β1x

2
i )
}

⇒0 =
n∑
i=1

yixi − β0

n∑
i=1

xi − β1

n∑
i=1

x2
i (2)

Plugging the expression for β0 obtained in equation (1) into equation (2), we obtain
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0 =
n∑
i=1

yixi −

(
1
n

n∑
i=1

yi − β1
1
n

n∑
i=1

xi

)
n∑
i=1

xi − β1

n∑
i=1

x2
i

⇒β1


n∑
i=1

x2
i −

1
n

(
n∑
i=1

xi

)2
 =

n∑
i=1

yixi −

(
1
n

n∑
i=1

yi

)(
n∑
i=1

xi

)

⇒ β1 =
∑n
i=1 yixi −

( 1
n

∑n
i=1 yi

)
(
∑n
i=1 xi)∑n

i=1 x
2
i − 1

n (
∑n
i=1 xi)

2

⇒ β1 =
n
∑n
i=1 yixi − (

∑n
i=1 yi) (

∑n
i=1 xi)

n
∑n
i=1 x

2
i − (

∑n
i=1 xi)

2 (3)

The expression in Equation (3) agrees with the answer stated above.

We now can substitute the result in Equation (3) back into Equation (1) to obtain

β0 = 1
n

n∑
i=1

yi − β1
1
n

n∑
i=1

xi

= 1
n

n∑
i=1

yi −
n
∑n
i=1 yixi − (

∑n
i=1 yi) (

∑n
i=1 xi)

n
∑n
i=1 x

2
i − (

∑n
i=1 xi)

2
1
n

n∑
i=1

xi

=
1
n

∑n
i=1 yi

(
n
∑n
i=1 x

2
i

)
− 1

n

∑n
i=1 yi (

∑n
i=1 xi)

2 − n (
∑n
i=1 yixi)

( 1
n

∑n
i=1 xi

)
+ 1

n (
∑n
i=1 yi) (

∑n
i=1 xi)

2

n
∑n
i=1 x

2
i − (

∑n
i=1 xi)

2

=
(∑n

i=1 x
2
i

)
(
∑n
i=1 yi)− (

∑n
i=1 xi) (

∑n
i=1 xiyi)

n
∑n
i=1 x

2
i − (

∑n
i=1 xi)

2

This agrees with the espression for β0 given above.

To formally identify this critical point as a maximum, you’d have to also verify that the Hessian was negative
definite; I won’t ask us to do that in this class.

5. If you have extra time: In RStudio, find the maximum likelihood estimates for β0 and β1.
Confirm that your answers match those from the lm function. Add a plot of the estimated
regression line to the scatterplot (consider using geom_abline).

See solutions posted on GitHub.

6. If you have even more extra time: Argue that maximizing the log-likelihood function from
part 3 is equivalent to minimizing the sum of squared errors SSE =

∑n
i=1 {yi − (β0 + β2xi)}2.

Thus, for this model, maximum likelihood is equivalent to estimating the coefficients by ordi-
nary least squares.

The first term of the log-likelihood function does not involve β0 or β1 at all, so we can ignore it for the
purpose of thinking about estimating those coefficients. The second term can be written as

−0.5
∑n
i=1 {yi − (β0 + β1xi)}2

σ2 = −0.5
σ2

n∑
i=1
{yi − (β0 + β1xi)}2 = −0.5

σ2 SSE

The values of β0 and β1 that make SSE as small as possible will make −0.5
σ2 SSE as large as possible.
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