Simple Random Samples: Sections 7.2, 7.3.1, 7.3.2

Motivating Example (Section 7.2, Example A)

The population is 393 short-stay hospitals.

Let c_i denote the number of patients discharged from the *i*th hospital during January 1968 (our book is old).

```
library(ggplot2) # for making plots
```

read in data and look at first few rows hospitals <- read.csv("http://www.evanlray.com/data/rice/Chapter%207/hospitals.txt")</pre> head(hospitals)

##		discharges	beds
##	1	57	10
##	2	35	16
##	3	23	20
##	4	120	24
##	5	92	25
##	6	98	26

```
# make a histogram
```

```
ggplot(data = hospitals, mapping = aes(x = discharges, y = ..density..)) +
  geom_histogram(boundary = 0, bins = 30)
```


Suppose we want to estimate the average number of patients discharged across this population of all hospitals, based on a sample from that population.

Population

- N is the population size (N = 393)
- c_1, c_2, \ldots, c_N are distinct values in the population $(c_1 = 57, c_2 = 35, \ldots)$
 - For this chapter, we regard these as N fixed constant values (hence c_i); not random!

Population Parameters

- A **population parameter** is a number describing the population. Examples:

 - population parameter $\mu = \frac{1}{N} \sum_{i=1}^{N} c_i$ population total: $\tau = \sum_{i=1}^{N} c_i = N\mu$ population variance: $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (c_i \mu)^2$
- More generally, a **parameter** is a constant in a probability model, such as the mean and variance of a Normal distribution.

Samples

- Sample: n observations from the population that we will use to estimate population parameters of interest.
- Simple random sample: A sample obtained from a procedure where every sample of size n has the same probability of being drawn from the population
 - For this chapter, **the random mechanism is in how the sample is selected** from the population of fixed values.

Statistics and Estimators

- Statistic: A number describing the sample. Depending on context, this may refer to either:
 - A random variable: each sample will result in a different value of the statistic.
 - * Example: $\bar{X} = \sum_{i=1}^{n} X_i$ (average number of discharges across hospitals in a sample that has not yet been selected; different samples will result in different realized values).
 - The realized value of this random variable for a particular sample.
 - * Example: $\bar{x} = \sum_{i=1}^{n} x_i$ (average number of discharges across hospitals in a sample we have taken; this is a number).
- Estimator: A statistic (as a random variable) that is used to estimate a population parameter. The number work \tilde{X} much be used as an estimator for the number of the second states of the secon
- The random variable X
 may be used as an estimator for the population mean μ.
 Estimate: The realized value of an estimator for a particular sample.
 - For a particular sample, the realized value \bar{x} may be used as an estimate for the population mean μ .

Summary in a Picture

Note: Confusingly, our book labels the observations in the population as x_1, \ldots, x_N and in the sample as x_1, \ldots, x_n – but the first sample item value, x_1 , may not be the same as the first population item value c_1 .