Example Conceptual Problems

There are a huge variety of possible conceptual problems. Here are a few examples.

Problem 1. A 90% confidence interval for the average number of children per household based on a simple random sample is found to be (0.7, 2.1). Because the average number of children per household, μ , is some fixed number in the population (at least, at a particular moment in time when we conduct the study), it doesn't make any sense to claim that $P(0.7 \le \mu \le 2.1) = 0.90$. What do we mean, then, by saying that this is a "90% confidence interval"? Can we ever make probability statements about confidence intervals?

For a 90% of samples, an interval calculated in this way will content the population mean μ .

Before taking the sample, the interval endpoints are random variables; denote them by A and B. Then the interval [A, B] is a random interval, and we can write $P(A \le \mu \le B) = 0.90$

We cannot make probability statements about the realized values of rendom variables, so once we have taken a sample and observed a = 0.7, b = 2.1, it does not make sense to write

P(07=442.1)=0.90.

first question with a written sentence. For the second question, you could write a sentence and/or draw a picture to illustrate.)

A posterior is a probability distribution that represents our state of knowledge about a parameter after having observed the sample danta. A 95% posterior credible interval is an interval [a, b] such that the posterior assigns probability 0.95 to that interval | P(B \in [a, b] | x_1,..., x_n) = 0.95.

One way to achieve this is by setting a to bethe 2.5th percentile of the posterior distribution and b the 97.5th percentile.

Problem 2. What is a posterior distribution in a Bayesian analysis? If I know the posterior distribution for a model parameter, how can a 95% posterior credible interval be formed? (You should answer the

Problem 3. What is the mean squared error of an estimator (you can answer with either a formula or a written sentence explaining the intuition)? Why is an estimator with low mean squared error preferred to an estimator with high mean squared error?

MSE(G) = E[{G-G}^2] is the average squared difference between the estimate and the parameter being estimated. We would like our estimates to be close to the parameter being estimated on average, which corresponds to a low MSE.

Example Worked Problems

The midterm will have problems roughly similar in content to the examples below.

Problem 1

The EPA conducts occasional reviews of its standards for airborne asbestos. During a review, the EPA examines data from several studies (denote the number of studies by s). Different studies keep track of different groups of people; different groups have different exposures to asbestos. Let n_i be the number of people in the i'th study, let x_i be the asbestos exposure for people in that study, and let y_i be the number of people who developed lung cancer in that study. The EPA's model is $Y_i \sim \text{Poisson}(\lambda_i)$, where $\lambda_i = n_i x_i \lambda$ and where λ is the typical rate at which asbestos causes cancer. The n_i 's and x_i 's are known constants; the Y_i 's are random variables. Because the different studies involve different sets of people in different locations, they model the Y_i 's from different studies as being independent (but not identically distributed since the λ_i 's are different!). The EPA wants to estimate λ .

In answering the questions below, you may use the following facts about the Poisson and Gamma distributions:

Suppose
$$X \sim \text{Poisson}(\lambda)$$

$$\frac{\text{p.f.} \quad f(x|\lambda) = e^{-\lambda} \frac{\lambda^{x}}{x!}}{\text{Mean } \lambda} \rightarrow f(y; |\lambda;) = e^{-\lambda} \frac{\lambda^{x}}{x!}$$
Suppose $X \sim \text{Gamma}(\alpha, \beta)$

$$\frac{\text{p.f.} \quad f(x|\alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}}{\text{Mean } \frac{\alpha}{\beta}}$$
Variance $\alpha\beta^{2}$

(a) Find the pdf of the joint distribution of $Y_1, \ldots, Y_s | x_1, n_1, \ldots, x_s, n_s, \lambda$.

$$f_{y, y, y_{0}|\lambda}(y_{1}, y_{0}, y_{0}|\lambda) = f_{y_{0}|\lambda}(y_{0}|\lambda)$$

$$= f_{y_{0}|\lambda}(y_{0}, y_{0}, y_{0}|\lambda) = f_{y_{0}|\lambda}(y_{0}$$

(b) Find the maximum likelihood estimator of λ .

Continuing from (a) the log-likelihood is
$$l(\lambda|y_1,...,y_s) = -\lambda \cdot \sum_{i=1}^{n} n_i x_i + \sum_{i=1}^{n} y_i \cdot \log(\lambda) + \log\left[\prod_{i=1}^{n} \left\{\frac{(n_i x_i)^{n_i}}{y_i!}\right\}\right]$$

The first and second derivatives are

$$\frac{d^2}{d\lambda^2} L(\lambda | y_1, y_5) = \frac{-1}{\lambda^2} \sum_{i=1}^{5} y_i$$

Setting the first derivative to O and soluting for 2 we obtain

$$= \lambda = \underbrace{\frac{\xi g_i}{\xi n_i x_i}}$$

Since the second derivative is negative, this is a global maximum.

The maximum likelihood estimator is

(c) Is the maximum likelihood estimator an unbiased estimator of
$$\lambda$$
?

$$E[\widehat{\lambda}^{nle}] = E[\underbrace{\widehat{\xi}_{ni}^{li}}_{\underline{\xi}_{ni}^{li}}] = \underbrace{\widehat{\xi}_{ni}^{li}}_{\underline{\xi}_{ni}^{li}} \cdot \underbrace{\widehat{\xi}_{E[Y_{i}]}}_{\underline{\xi}_{ni}^{li}} \cdot \underbrace{\widehat{\xi}_{ni}^{li}}_{\underline{\xi}_{ni}^{li}} \cdot \underbrace{\widehat{\xi}_{ni}^{li}}_{\underline{\xi}_{n$$

(e) Find the mean squared error of the maximum likelihood estimator.

$$MSE(\hat{\lambda}^{ME}) = \{Bico(\hat{\lambda}^{ME})\}^{2} + Var(\hat{\lambda}^{ME})$$

$$= 0^{2} + \sum_{i=1}^{l} n_{i} \chi_{i}$$

$$= \frac{1}{\sum_{i=1}^{l} n_{i} \chi_{i}}$$

(f) Suppose the EPA uses this model to estimate λ by combining data from s=3 studies with data recorded in the table below. Find an expression for the maximum likelihood estimate of λ . Your answer should involve only numbers, no symbols; but you do not need to simplify your expression.

Study Number (i)	Sample Size (n_i)	Exposure Level (x_i)	Cancer Case Count (y_i)
1	10	0.3	1
2	25	0.2	3
3	100	0.5	15

(g) Suppose the analysts adopt a prior of $\Lambda \sim \text{Gamma}(\alpha, \beta)$, where α and β are known constants they choose to reflect their prior knowledge about λ . Find the posterior distribution for Λ . You should arrive at a specific form for the posterior distribution, with parameters involving α , β , x_1, \ldots, x_s , and $n_1, \ldots, n_{s-\Lambda}$

Fright, ...,
$$P_s$$
 (λ (y_1), y_s) oc $f_{\Lambda}(\lambda)$. $f_{Y_1,...,Y_{s}|\Lambda}(y_1,...,y_{s}|\Lambda)$

$$= \int_{I(\alpha)}^{\alpha} \lambda^{\alpha-1} e^{-\beta \lambda} \cdot e^{-\lambda \frac{\pi}{2} n_1 x_1} \cdot \lambda^{\frac{\pi}{2} y_1} \cdot \int_{I(\alpha)}^{\infty} \frac{(n_1 x_1)^{y_1}}{y_1!}$$

$$= \lambda^{\frac{\pi}{2} n_1 x_1} \cdot \lambda^{\frac{\pi}{2} y_1} \cdot \int_{I(\alpha)}^{\infty} \frac{(n_1 x_1)^{y_1}}{y_1!}$$

$$= \lambda^{\frac{\pi}{2} n_1 x_1} \cdot \lambda^{\frac{\pi}{2} y_1} \cdot \int_{I(\alpha)}^{\infty} \frac{(n_1 x_1)^{y_1}}{y_1!}$$

$$= \lambda^{\frac{\pi}{2} n_1 x_1} \cdot \lambda^{\frac{\pi}{2} y_1} \cdot \int_{I(\alpha)}^{\infty} \frac{(n_1 x_1)^{y_1}}{y_1!}$$

$$= \lambda^{\frac{\pi}{2} n_1 x_1} \cdot \lambda^{\frac{\pi}{2} y_1} \cdot \int_{I(\alpha)}^{\infty} \frac{(n_1 x_1)^{y_1}}{y_1!}$$

$$= \lambda^{\frac{\pi}{2} n_1 x_1} \cdot \lambda^{\frac{\pi}{2} y_1} \cdot \int_{I(\alpha)}^{\infty} \frac{(n_1 x_1)^{y_1}}{y_1!}$$

This is proportional to the palf of a Gamma distribution.

The posterior is

(h) Again, the EPA uses this model to estimate λ by combining data from three studies with data recorded in the table below. They use a prior of $\Lambda \sim \text{Gamma}(1,3)$. Find expressions for the parameters of the posterior distribution for Λ . Your answer should involve only numbers, no symbols; but you do not need to simplify your expression.

Study Number (i)	Sample Size (n_i)	Exposure Level (x_i)	Cancer Case Count (y_i)
1	10	0.3	1
2	25	0.2	3
3	100	0.5	15

The first parameter of the posterior is
$$\alpha^{post} = |+|+3+|5|$$

The second parameter of the posterior is
$$\beta^{\text{post}} = 3 + 10.6.3 + 25.6.2 + 100.0.5$$

Problem 2. From independent surveys of two populations, 90% confidence intervals for the population means μ_1 and μ_2 will be constructed. Denote the first interval, which is an estimate of μ_1 , by $[L_1, U_1]$ and the second interval, which is an estimate of μ_2 , by $[L_2, U_2]$. We have not taken our sample yet, so L_1 , U_1 , L_2 , and U_2 are random variables. What is the probability that both of these confidence intervals will contain their respective population means?

$$P(L_1 \le \mu_1 \le 0_1 \text{ and } L_2 \le \mu_2 \le 0_2)$$
= $P(L_1 \le \mu_1 \le 0_1) \cdot P(L_2 \le \mu_2 \le 0_2)$
= $0.9^2 \cdot 0.9$
= 0.81

Problem 3. Two suveys were independently conducted to estimate a population mean μ . Denote the estimators from the independent surveys and their variances by $\hat{\mu}_1$, with variance $\sigma_1^2 > 0$ and $\hat{\mu}_2$, with variance $\sigma_2^2 > 0$. Assume that both $\hat{\mu}_1$ and $\hat{\mu}_2$ are unbiased. For some constants α and β , the two estimators can be combined to give a new estimator $Y = \alpha \hat{\mu}_1 + \beta \hat{\mu}_2$.

(a) Find a condition on α and β so that the combined estimator Y is unbiased.

We need
$$E[9] = \mu$$
:
 $E[9] = E[\alpha \hat{\mu}_1 + \beta \hat{\mu}_2] = \alpha \cdot E[\hat{\mu}_1] + \beta \cdot E[\hat{\mu}_2] = \alpha \mu + \beta \mu$
 $\mu(\alpha + \beta) = \mu$
 $\alpha + \beta = 1$

(b) What choice of α and β minimizes the variance of Y, subject to the condition of unbiasedness?

Var
$$(\alpha \hat{\mu}_1 + \beta \hat{\mu}_2) = \alpha^2 \sigma_1^2 + \beta^2 \sigma_2^2$$

Use the condition that $\alpha + \beta = 1$, or $\alpha = 1 - \beta$:
 $Var(1) = (1 - \beta)^2 \sigma_1^2 + \beta^2 \sigma_2^2 = (1 - 2\beta + \beta^2) \sigma_1^2 + \beta^2 \sigma_2^2$
Find β to minimize: take the first derivative and set to 0:
 $\frac{d}{d\beta} Var(1) = -2\sigma_1^2 + 2\beta\sigma_1^2 + 2\beta\sigma_2^2 = 0$
 $\Rightarrow \beta (\sigma_1^2 + \sigma_2^2) = \sigma_1^2$
 $\Rightarrow \beta = \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2}$, so $\alpha = 1 - \beta = 1 - \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$
The second derivative is $\frac{d}{d\beta^2} Var(1) = 2\sigma_1^2 + 2\sigma_2^2 > 0$
so the critical point above is a global minimum of $Var(1)$