Stat 140: R Commands and Concepts So Far

January 30, 2018

Task

R Command

Load a package

library(dplyr)

Assign a value to a variable

my_var <- 3

Read a csv file

nhanes <- read_csv("path/to/nhanes.csv")

Display first few lines of a head(nhanes)
data frame
Display more detail about a  str(nhanes)

data frame

Number of rows and
columns in a data frame

dim(nhanes), nrow(nhanes), ncol (nhanes)

Convert a nominal categori-
cal variable to factor

nhanes <- nhanes %>% mutate(Gender = factor(Gender))

Convert an ordinal
categorical variable
to factor

nhanes <- nhanes %> mutate(
Education = factor(Education,
levels = c("High School", "Some College", "College Grad"),
ordered = TRUE))

View the distinct values of
a variable (mainly useful for
categorical variables)

nhanes %>% distinct(Education)

Count number of observa-
tions in each level of a cate-
gorical variable

tally( ~ Education, data = nhanes)

Count number of observa-
tions in each combination of
levels of two categorical vari-
ables

tally(Education ~ Gender, data = nhanes)

Add or modify a variable
in a data frame

nhanes_modified <- nhanes %>%
mutate (Weight_pounds = Weight * 2.205)

Filter observational units,
character condition

nhanes_fewer_obs_units <- nhanes %>%
filter(Education == "High School")

Filter, character condition
with multiple values

nhanes_fewer_obs_units <- nhanes %>%
filter(Education == "High School" | Education == "Some College")

Filter, numeric condition

nhanes_fewer_obs_units <- nhanes %>%
filter(Age >= 22)

Filter, multiple conditions

nhanes_fewer_obs_units <- nhanes %>
filter(Education == "High School", Age >= 22)

Sort observational units, as-
cending order

nhanes_sorted <- nhanes )>% arrange(Age)

Sort observational units, de-
scending order

nhanes_sorted <- nhanes %>} arrange(desc(Age))




In this document I am going to summarize the main commands and concepts for R that we have learned so far — along
with a couple of others that you haven’t seen but are closely related to what we’ve done so far. These are organized into
four main groups:

1. R variables and the assignment operator

2. Basic interactions with data frames
a. Reading data into R from spreadsheet files
b. Getting a first look at what’s in a data frame
c. Converting categorical variables to factors

3. Summarizing categorical data

4. Data wrangling

I will illustrate the ideas using the NHANES data we looked at in Lab 1.

1. R variables and the assignment operator

In R, we use the word “variable” in two ways. The first is a name that we’ve given a value that we want to be able to
re-use later. In the example below, my_var is a variable. We have assigned the value 3 to it using the assignment operator,
<- (a less than sign followed by a minus sign, to form an arrow).

my_var <- 3

We can see the value that’s currently assigned to my_var by entering the name of the variable on its own line:
my_var

## [1]1 3

We can also use that value in later calculations:

my_var * 2

## [1] 6

The second meaning of the word “variable” is more closely related to our use of the word in statistics: a column in a data
frame. We’ll look at that next.

2. Basic interactions with data frames

In R, the most common way to store data is in a data frame. You can think of a data frame as being like a spreadsheet.
Each row corresponds to an observational unit, and each column corresponds to a variable.

a. Reading data into R from spreadsheet files

Usually, the data are stored in a spreadsheet-like file outside of R. The file format we’ll work with most in this class is a
csv file (csv stands for comma separated value). We can read in csv files using the read_csv function, which is in the
readr package:

library(readr)

## Warning: package 'readr' was built under R version 3.4.2

nhanes <- read_csv("http://www.evanlray.com/stat140_s2018/lecture/20180125_intro_to_r/nhanes.csv")

## Parsed with column specification:
## cols(

## ID = col_integer(),

## Gender = col_character(),

##  Age = col_integer(),

## Race = col_character(),

##  Education = col_character(),

##  MaritalStatus = col_character(),



##  HHIncome = col_character(),
##  Poverty = col_double(),

##  Weight = col_double(),

##  Length = col_double(),

## Height = col_double(),

##  Diabetes = col_character(),
## nPregnancies = col_integer(),
## nBabies = col_integer(),

##  PregnantNow = col_character()
## )

If the data file was stored on your computer instead of on the class website, you would change the file location in these
commands to where the file is located on your computer.

There are also functions to read in data from other file formats. For example, if your data were stored in an excel file
(with a file extension like xlsx), you could use the read_excel function from the readxl package to read the data in. This
function doesn’t handle reading files from the internet very well yet, so we won’t use it much in this class — but it’s there if
you need it later.

b. Getting a first look at what’s in the data frame

There are a couple of questions I always ask myself whenever I'm thinking about a new data set:

1. How many observational units and variables are in this data set?
2. What are the variables and variable types?

We've talked about three functions that can be used to help answer these questions.

head

The head function shows you the first few rows of the data set (by default, the first 6 rows). It’s good for getting a quick
summary of what’s in the data frame, but it will not tell you how many observational units there are.

head (nhanes)

## # A tibble: 6 x 15

## ID Gender Age Race Education MaritalStatus HHIncome Poverty
#it <int> <chr> <int> <chr> <chr> <chr> <chr> <dbl>
## 1 62163 male 14 Asian <NA> <NA> more 99999 4.07
## 2 62172 female 43 Black High School NeverMarried 20000-24999 2.02
## 3 62174 male 80 White College Grad Married 65000-74999 4.30
## 4 62174 male 80 White College Grad Married 65000-74999 4.30
## 5 62175 male 5 White <NA> <NA> 10000-14999 0.39
## 6 62176 female 34 White College Grad Married more 99999 5.00
## # . with 7 more variables: Weight <dbl>, Length <dbl>, Height <dbl>,

##t # Diabetes <chr>, nPregnancies <int>, nBabies <int>, PregnantNow <chr>
str

The str function will print out some more detailed information about the data frame, including how many observational
units and variables there are, and the type of each variable — but its output is a little less well organized.

str(nhanes)

## Classes 'tbl_df', 'tbl' and 'data.frame': 5000 obs. of 15 variables:

# $ ID : int 62163 62172 62174 62174 62175 62176 62178 62180 62186 62190 ..
## ¢ Gender : chr "male" "female" "male" "male"

##t $ Age : int 14 43 80 80 5 34 80 35 17 15 ...

## $ Race : chr "Asian" "Black" "White" "White"

## $ Education : chr NA "High School" "College Grad" "College Grad"

## $ MaritalStatus: chr NA "NeverMarried" "Married" "Married"

## ¢ HHIncome : chr "more 99999" "20000-24999" "65000-74999" "65000-74999"



## $ Poverty :num 4.07 2.02 4.3 4.3 0.39 5 0.05 0.87 0.53 0.54 ...
## $ Weight : num 49.4 98.6 95.8 95.8 23.9 68.7 85.9 89 63.5 38.5 ...
## $ Length :num NA NA NA NA NA NA NA NA NA NA ...

## $ Height :num 169 172 168 168 120 ...

## $ Diabetes : chr "No" "No" "No" "No"

## $ nPregnancies : int NA 3 NA NA NA 5 NA NA NA NA ...

## $ nBabies : int NA 2 NA NA NA 2 NA NA NA NA ...

## $ PregnantNow : chr NA "No" NA NA ...

## - attr(x, "spec")=List of 2

#H# ..$ cols :List of 15

## .. ..$ 1D : list O

## .. .. ..— attr(x, "class")= chr "collector_integer" "collector"
#it .. ..$ Gender : 1list O

#it .. .. ..— attr(*, "class")= chr '"collector_character" "collector"
# .. ..$ Age ¢ list Q)

# .. .. ..- attr(x, "class")= chr "collector_integer" "collector"
# .. ..$ Race : list O

#i# .. .. ..— attr(*, "class")= chr '"collector_character" "collector"
## .. ..$ Education : 1ist O

##t .. .. ..— attr(x, "class")= chr "collector_character" "collector"
## .. ..$ MaritalStatus: 1list()

## .. .. ..— attr(x, "class")= chr "collector_character" "collector"
## .. ..$ HHIncome ¢ list ()

#it .. .. ..— attr(*, "class")= chr '"collector_character" "collector"
## .. ..$ Poverty : 1ist ()

#H# .. .. ..— attr(x, "class")= chr "collector_double" "collector"

## .. ..$ Weight ¢ list()

## .. .. ..— attr(x, "class")= chr "collector_double" "collector"

## .. ..$ Length 1 1ist ()

##t .. .. ..— attr(*, "class")= chr "collector_double" "collector"

## .. ..$ Height : list(Q)

#H# .. .. ..— attr(x, "class")= chr "collector_double" "collector"

#i .. ..$ Diabetes : list O

#i# .. .. ..— attr(x, "class")= chr "collector_character" "collector"
## .. ..$ nPregnancies : list()

# .. .. ..- attr(*, "class")= chr "collector_integer" "collector"
## .. ..$ nBabies : 1list()

# .. .. ..- attr(x, "class")= chr "collector_integer" "collector"
##* .. ..$ PregnantNow : 1listQ

#it .. .. ..— attr(*, "class")= chr '"collector_character" "collector"
## ..$ default: list()

## .. ..- attr(x, "class")= chr ‘"collector_guess" "collector"

##  ..- attr(x, "class")= chr "col_spec"

dim, nrow, and ncol

The dim function will tell you how many rows (i.e., how many observational units) and columns (i.e., how many variables)
are in the data frame (in that order). The nrow function will tell you how many rows there are, and the ncol function will
tell you how many columns there are.

dim(nhanes)

## [1] 5000 15

nrow (nhanes)

## [1] 5000

ncol (nhanes)

## [1] 15



c. Converting categorical variables to factors

When you first read a data set in, quantitative data types will usually be assigned the correct data type in R, but categorical
variables will typically be stored as a character data type in R. We’ll need to tell R that these are categorical variables by
converting them to factors. A factor is just R’s name for a categorical variable.

Remember that we divide categorical variables into two sub-types:

1. Nominal, where there is no specific order to the categories (for example think of eye color — the categories might be
blue, green, brown, etc., and there is no specific order to those categories)
2. Ordinal, where there is a specific order to the categories (for example think of education level — the categories might

W 7w YW

be “less than high school degree”, “some college”, “college degree”, “graduate degree”)

The difference in reading these into R is in whether or not we need to specify an ordered = TRUE argument to the factor
function.

In both cases, we will use the mutate function to modify the data frame. The mutate function will be described more later
in this document. It is in the dplyr package, so we need to load that package before we can use it:

library(dplyr)
## Warning: package 'dplyr' was built under R version 3.4.2

#i#
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':

##

it filter, lag

## The following objects are masked from 'package:base':
##

## intersect, setdiff, setequal, union

Converting a nominal categorical variable to a factor

nhanes <- nhanes %>%
mutate(Gender = factor(Gender))

Converting an ordinal categorical variable to an ordered factor

nhanes <- nhanes %>
mutate (
Education = factor(Education,
levels = c("8th Grade", "9 - 11th Grade", "High School", "Some College", "College Grad"),
ordered = TRUE)
)

For an ordinal variable, we need to add two more arguments to the call to factor:

e specify the levels of the variable in order tell R what order they come in.
e ordered = TRUE argument to tell R that it needs to pay attention to and remember the order we specified above.

Listing distinct values of a variable

In order to know what to list for the possible levels of an ordinal categorical variable, you can use the distinct function
to list the distinct values of the variable:

nhanes %>% distinct(Education)

## # A tibble: 6 x 1

## Education
it <ord>
#it 1 <NA>



## 2 High School
## 3  College Grad
## 4  Some College
## 5 8th Grade
## 6 9 - 11th Grade

3. Summarizing Categorical Data

It is often helpful to obtain counts of how many observational units fall into each category of a categorical variable, or
into each combination of categories for two categorical variables. We will do this with the tally function in the mosaic
package.

library(mosaic)
tally( ~ Education, data = nhanes)

## Education

#H# 8th Grade 9 - 11th Grade High School Some College College Grad
## 212 405 679 1160 1128
## <NA>
## 1416

tally(Education ~ Gender, data = nhanes)

## Gender

## Education female male
##  8th Grade 91 121
## 9 - 11th Grade 174 231
##  High School 338 341
##  Some College 615 545
##  College Grad 584 544
##  <NA> 693 723

The first argument to the tally function is a formula. With one variable, the variable goes after the ~ (this character is a
tilde; it’s found in the top left corner of my keyboard). With two variables, one variable goes before the ~ and the second
goes after it. The second argument is the data frame where these variables are found.

4. Data Wrangling
In this class, we will learn about a few of the most common operations you may want to perform on data sets. Here are
the ones we’ve talked about so far; we’ll add a couple more to this list later:

e a. Add new variables or modify existing variables (remember that variables correspond to columns of the data
frame):

— mutate: add a new variable or modify an existing variable
o b. Keep a subset of observational units (rows):

— filter: keep only a subset of the observational units in the data frame that meet conditions you specify
e c. Arrange the observational units (rows) in order:

— arrange: sort the observations in order according to one of the variables

All of these functions are in the dplyr package, so we’ll need to load that package:
library(dplyr)

a. mutate

The basic use of mutate looks like this:



<name of modified data frame> <- <original data frame> %>%
mutate (

<new/modified variable 1>

<new/modified variable 2>

<how to calculate new/modified variable 1>,
<how to calculate new/modified variable 2>

)

Note that the mutate function does not necessarily modify the original data frame: it creates a second copy, and leaves the
original as it was.

Suppose we want to convert the subjects’ weight in kilograms to a weight in pounds, and add the weight in pounds to the
data frame as a new variable called Weight_pounds. Here’s how we can do that (there are 2.205 pounds in a kilogram):
nhanes_with_weight_in_pounds <- nhanes %>%

mutate (Weight_pounds = Weight * 2.205)

Here’s a look at the structure of the newly created data frame, nhanes_with_weight_in_pounds. Note the addition of a
new variable at the end called Weight_pounds. If we were to look at the original nhanes data frame, we would see that it
was not changed.

str(nhanes_with_weight_in_pounds)

## Classes 'tbl_df', 'tbl' and 'data.frame': 5000 obs. of 16 variables:

# $ ID : int 62163 62172 62174 62174 62175 62176 62178 62180 62186 62190 ...
## $ Gender : Factor w/ 2 levels "female","male": 2122212211

# $ Age : int 14 43 80 80 5 34 80 35 17 15 ...

## $ Race : chr "Asian" "Black" "White" "White"

## $ Education : Ord.factor w/ 5 levels "8th Grade"<"9 - 11th Grade"<..: NA 3 5 5 NA 5 3 5 NA NA ...
## $ MaritalStatus: chr NA "NeverMarried" "Married" "Married"

## $ HHIncome : chr "more 99999" "20000-24999" "65000-74999" "65000-74999"

## $ Poverty :num 4.07 2.02 4.3 4.3 0.39 5 0.05 0.87 0.53 0.54 ...

## $ Weight : num 49.4 98.6 95.8 95.8 23.9 68.7 85.9 89 63.5 38.5 ...

## $ Length : num NA NA NA NA NA NA NA NA NA NA ...

## $ Height :num 169 172 168 168 120 ...

## $ Diabetes : chr "No" "No" "No" "No"

## $ nPregnancies : int NA 3 NA NA NA 5 NA NA NA NA ...

## ¢ nBabies : int NA 2 NA NA NA 2 NA NA NA NA ...

## § PregnantNow : chr NA "No" NA NA ...
## § Weight_pounds: num 108.9 217.4 211.2 211.2 52.7 ...

b. filter

We often want to look at a subset of the observational units in a data frame. The filter command lets us do this by
specifying values of the variables we want to keep. In this class, we will use a small amount of the filtering capabilities that
R provides. Here are a few examples of some filters we will use. As with the mutate command, filter does not modify
the original data set.

Filter according to the value of a categorical variable

In the command below we keep only observational units with an Education level of “High School”. Note the use of two
equals signs and quotes around the value we want to keep.

nhanes_fewer_obs_units <- nhanes %>%
filter(Education == "High School")

head (nhanes_fewer_obs_units)

## # A tibble: 6 x 15

#i# ID Gender Age Race  Education MaritalStatus HHIncome Poverty
##  <int> <fctr> <int> <chr> <ord> <chr> <chr> <dbl>
# 1 62172 female 43  Black High School NeverMarried 20000-24999 2.02
## 2 62178 male 80 White High School Widowed 0-4999 0.05



## 3 62223 male 54  Asian High School Married <NA> NA
## 4 62231 female 48 Mexican High School Married more 99999 3.92
## 5 62308 female 78  White High School Married 35000-44999 2.64
## 6 62308 female 78  White High School Married 35000-44999 2.64
## # . with 7 more variables: Weight <dbl>, Length <dbl>, Height <dbl>,

## # Diabetes <chr>, nPregnancies <int>, nBabies <int>, PregnantNow <chr>

Filter according to the value of a categorical variable, keep multiple values

In the command below we keep only observational units with an Education level of “High School” or “Some College”. Note
the use of two equals signs and quotes around the values we want to keep. The vertical line in between the two possible
values can be read as “or”. On my keyboard, that symbol is above the backslash, on the right side of the keyboard.

nhanes_fewer_obs_units <- nhanes %>%
filter(Education == "High School" | Education == "Some College")

head (nhanes_fewer_obs_units)

## # A tibble: 6 x 15

#i# ID Gender  Age Race Education MaritalStatus HHIncome
##  <int> <fctr> <int> <chr> <ord> <chr> <chr>
## 1 62172 female 43 Black High School NeverMarried 20000-24999
## 2 62178 male 80 White High School Widowed 0-4999
## 3 62206 female 35 White Some College Married 75000-99999
## 4 62208 male 38 Hispanic Some College Married 35000-44999
## 5 62223 male 54 Asian High School Married <NA>
## 6 62231 female 48 Mexican High School Married more 99999
## # ... with 8 more variables: Poverty <dbl>, Weight <dbl>, Length <dbl>,
##t # Height <dbl>, Diabetes <chr>, nPregnancies <int>, nBabies <int>,
## #  PregnantNow <chr>

Filter according to the value of a quantitative variable

Here we keep only the observational units with an Age of at least 22:

nhanes_fewer_obs_units <- nhanes %>/
filter(Age >= 22)

head (nhanes_fewer_obs_units)

## # A tibble: 6 x 15

#H# ID Gender Age Race Education MaritalStatus HHIncome Poverty
#it <int> <fctr> <int> <chr> <ord> <chr> <chr> <dbl>
## 1 62172 female 43 Black High School NeverMarried 20000-24999 2.02
## 2 62174 male 80 White College Grad Married 65000-74999 4.30
## 3 62174 male 80 White College Grad Married 65000-74999 4.30
## 4 62176 female 34 White College Grad Married more 99999 5.00
## 5 62178 male 80 White High School Widowed 0-4999 0.05
## 6 62180 male 35 White College Grad Married 20000-24999 0.87
## # . with 7 more variables: Weight <dbl>, Length <dbl>, Height <dbl>,

## # Diabetes <chr>, nPregnancies <int>, nBabies <int>, PregnantNow <chr>

We could also use a variety of other conditions:
nhanes_fewer_obs_units <- nhanes %>%
filter(Age < 22)

nhanes_fewer_obs_units <- nhanes %>/
filter(Age <= 22)

nhanes_fewer_obs_units <- nhanes %>/
filter(Age == 22)



nhanes_fewer_obs_units <- nhanes %>%
filter(Age > 22)

Filter according to multiple conditions

If we have multiple conditions, they can be separated by commas in the call to the filter function:

nhanes_fewer_obs_units <- nhanes %>%
filter(Education == "High School" | Education == "Some College", Age > 22)

head (nhanes_fewer_obs_units)

## # A tibble: 6 x 15

#i# ID Gender  Age Race Education MaritalStatus HHIncome
##  <int> <fctr> <int> <chr> <ord> <chr> <chr>
## 1 62172 female 43 Black High School NeverMarried 20000-24999
## 2 62178 male 80 White High School Widowed 0-4999
## 3 62206 female 35 White Some College Married 75000-99999
## 4 62208 male 38 Hispanic Some College Married 35000-44999
## 5 62223 male 54 Asian High School Married <NA>
## 6 62231 female 48 Mexican High School Married more 99999
#H # . with 8 more variables: Poverty <dbl>, Weight <dbl>, Length <dbl>,
##t # Height <dbl>, Diabetes <chr>, nPregnancies <int>, nBabies <int>,
## #  PregnantNow <chr>

C. arrange

The arrange function lets you sort the observational units in a data frame according to the values of one of the variables.

Sort in ascending order (the default)

nhanes_sorted <- nhanes %>%
arrange (Age)

head (nhanes_sorted)

## # A tibble: 6 x 15

#i#t ID Gender Age Race Education MaritalStatus HHIncome Poverty
#i#t <int> <fctr> <int> <chr> <ord> <chr> <chr> <dbl>
## 1 62435 female 0 White <NA> <NA> <NA> NA
## 2 62451 female 0 White <NA> <NA> 0-4999 0.23
## 3 62468 female 0 Hispanic <NA> <NA> 20000-24999 0.89
## 4 62493 female 0 Other <NA> <NA> 35000-44999 2.65
## 5 62520 male 0 White <NA> <NA> 10000-14999 0.89
## 6 62656 female 0 Mexican <NA> <NA> 15000-19999 0.73
HH # . with 7 more variables: Weight <dbl>, Length <dbl>, Height <dbl>,

## # Diabetes <chr>, nPregnancies <int>, nBabies <int>, PregnantNow <chr>

head (nhanes)

## # A tibble: 6 x 15

#i# ID Gender Age Race Education MaritalStatus HHIncome Poverty
##  <int> <fctr> <int> <chr> <ord> <chr> <chr> <dbl>
## 1 62163 male 14 Asian <NA> <NA> more 99999 4.07
## 2 62172 female 43 Black High School NeverMarried 20000-24999 2.02
## 3 62174 male 80 White College Grad Married 65000-74999 4.30
## 4 62174 male 80 White College Grad Married 65000-74999 4.30
## 5 62175 male 5 White <NA> <NA> 10000-14999 0.39
## 6 62176 female 34 White College Grad Married more 99999 5.00



#i#
#it

Sort in descending order

# ...

#

with 7 more variables: Weight <dbl>, Length <dbl>, Height <dbl>,

Diabetes <chr>, nPregnancies <int>, nBabies <int>, PregnantNow <chr>

To sort in descending order, we wrap the variable we want to sort by in desc():

nhanes_sorted <- nhanes %>%

arrange(desc(Age))

head (nhanes_sorted)

<dbl>

4.

2
4
4
0

(¢

07

.02
.30
.30
.39
.00

## # A tibble: 6 x 15

#i# ID Gender Age Race Education MaritalStatus HHIncome

##  <int> <fctr> <int> <chr> <ord> <chr> <chr>

## 1 62174 male 80 White College Grad Married 65000-74999

## 2 62174 male 80 White College Grad Married 65000-74999

## 3 62178 male 80 White High School Widowed 0-4999

## 4 62256 male 80 White 8th Grade Married 20000-24999

## 5 62279 male 80 Black 9 - 11th Grade Widowed <NA>

## 6 62279 male 80 Black 9 - 11th Grade Widowed <NA>

## # ... with 8 more variables: Poverty <dbl>, Weight <dbl>, Length <dbl>,
##t # Height <dbl>, Diabetes <chr>, nPregnancies <int>, nBabies <int>,

## #  PregnantNow <chr>

head (nhanes)

## # A tibble: 6 x 15

#it ID Gender Age Race Education MaritalStatus HHIncome Poverty
## <int> <fctr> <int> <chr> <ord> <chr> <chr>

## 1 62163 male 14 Asian <NA> <NA> more 99999

## 2 62172 female 43 Black High School NeverMarried 20000-24999

## 3 62174 male 80 White College Grad Married 65000-74999

## 4 62174 male 80 White College Grad Married 65000-74999

## 5 62175 male 5 White <NA> <NA> 10000-14999

## 6 62176 female 34 White College Grad Married more 99999

## # ... with 7 more variables: Weight <dbl>, Length <dbl>, Height <dbl>,
## # Diabetes <chr>, nPregnancies <int>, nBabies <int>, PregnantNow <chr>

10



	1. R variables and the assignment operator
	2. Basic interactions with data frames
	a. Reading data into R from spreadsheet files
	b. Getting a first look at what's in the data frame
	c. Converting categorical variables to factors

	3. Summarizing Categorical Data
	4. Data Wrangling
	a. mutate
	b. filter
	c. arrange


