
Multiple Logistic Regression
Logistic Regression with Multiple Explanatory Variables

We will now extend logistic regression to allow for p explanatory variables which may be either quantitative
or categorical.

P (Yi = 1|Xi1, . . . , Xip) = p(Xi1, . . . , Xip) = eβ0+β1Xi1+···+βpXip

1 + eβ0+β1Xi1+···+βpXip

Illustration with p = 2 explanatory variables:
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Running Example

This example is adapted from section 4.3 of ISLR. We have information on ten thousand customers; our goal
is to predict which customers will default on their credit card debt.
head(Default, 4)

## default student balance income
## 1 No No 729.5265 44361.63
## 2 No Yes 817.1804 12106.13
## 3 No No 1073.5492 31767.14
## 4 No No 529.2506 35704.49
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Example 1: Two Quantitative Variables

Let’s try using balance and income as explanatory variables.
fit <- train(

form = default ~ balance + income,
data = Default,
family = "binomial", # this is an argument to glm; response is 0 or 1, binomial
method = "glm", # method for fit; "generalized linear model"
trControl = trainControl(method = "none")

)
summary(fit)

##
## Call:
## NULL
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.4725 -0.1444 -0.0574 -0.0211 3.7245
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.154e+01 4.348e-01 -26.545 < 2e-16 ***
## balance 5.647e-03 2.274e-04 24.836 < 2e-16 ***
## income 2.081e-05 4.985e-06 4.174 2.99e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2920.6 on 9999 degrees of freedom
## Residual deviance: 1579.0 on 9997 degrees of freedom
## AIC: 1585
##
## Number of Fisher Scoring iterations: 8

(a) What is the estimated equation for this model?

(b) What is the decision boundary?

0.5 = P̂ (Yi = 1|Xi1, . . . , Xip) = f̂1(Xi1, . . . , Xip) = eβ̂0+β̂1Xi1+β̂2Xi2

1 + eβ̂0+β̂1Xi1+β̂2Xi2
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Plots
df2 <- Default %>%

mutate(
pred = predict(fit, type = "prob")[["Yes"]]

)

ggplot(data = df2, mapping = aes(x = balance, y = income, color = pred)) +
geom_point() +
geom_abline(intercept = 1.154e+01 / 2.081e-05, slope = - 5.647e-03 / 2.081e-05) +
scale_color_gradient2(low = scales::muted("blue"), high = scales::muted("red"), midpoint = 0.5)
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max_balance <- max(Default$balance)
max_income <- max(Default$income)
background <- expand.grid(

balance = seq(from = 0, to = max_balance, length = 101),
income = seq(from = 0, to = max_income, length = 101))

background <- background %>%
mutate(

est_prob_default = predict(fit, newdata = background, type = "prob")[["Yes"]],
est_default = predict(fit, newdata = background)

)

ggplot() +
geom_raster(data = background,

mapping = aes(x = balance, y = income, fill = est_default), alpha = 0.5) +
geom_point(data = Default, mapping = aes(x = balance, y = income, color = default)) +
scale_color_discrete("Default") +
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geom_abline(intercept = 1.154e+01 / 2.081e-05, slope = - 5.647e-03 / 2.081e-05)
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Example 2: One Categorical Explanatory variable

fit <- train(
form = default ~ student,
data = Default,
family = "binomial", # this is an argument to glm; response is 0 or 1, binomial
method = "glm", # method for fit; "generalized linear model"
trControl = trainControl(method = "none")

)
summary(fit)

##
## Call:
## NULL
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.2970 -0.2970 -0.2434 -0.2434 2.6585
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.50413 0.07071 -49.55 < 2e-16 ***
## studentYes 0.40489 0.11502 3.52 0.000431 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2920.6 on 9999 degrees of freedom
## Residual deviance: 2908.7 on 9998 degrees of freedom
## AIC: 2912.7
##
## Number of Fisher Scoring iterations: 6

Similar to the use of categorical explanatory variables in linear models, R has created a new indicator variable
for use in the regression:

Xi1 = studentYesi =
{

1 if customer i is a student
0 otherwise

(a) What is the estimated equation for this model?
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(b) What is the predicted probability of default for a non-student?

predict(fit, newdata = data.frame(student = "No"), type = "prob")[["Yes"]]

## [1] 0.02919501
# compare to...
exp(-3.50413) / (1 + exp(-3.50413))

## [1] 0.02919495
Default %>%

filter(student == "No") %>%
summarize(prop_default = mean(default == "Yes"))

## prop_default
## 1 0.02919501

(c) What are the estimated odds of default for a non-student?

(d) What is the predicted probability of default for a student?

predict(fit, newdata = data.frame(student = "Yes"), type = "prob")[["Yes"]]

## [1] 0.04313859
# compare to...
exp(-3.50413 + 0.40489) / (1 + exp(-3.50413 + 0.40489))

## [1] 0.04313862
Default %>%

filter(student == "Yes") %>%
summarize(prop_default = mean(default == "Yes"))

## prop_default
## 1 0.04313859

(e) What are the estimated odds of default for a student?
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(f) What is the interpretation of β̂1?
exp(0.40489)

## [1] 1.499138

(g) Does someone’s student status have a statistically significant association with whether or
not they default?

Note about decision boundaries

• In this example, our predicted class is 0 for all values of xi!
• In general, a decision boundary need not exist; this often happens with categorical explanatory variables.
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Example 3: All 3 Explanatory Variables

fit <- train(
form = default ~ student + balance + income,
data = Default,
family = "binomial", # this is an argument to glm; response is 0 or 1, binomial
method = "glm", # method for fit; "generalized linear model"
trControl = trainControl(method = "none")

)
summary(fit)

##
## Call:
## NULL
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.4691 -0.1418 -0.0557 -0.0203 3.7383
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.087e+01 4.923e-01 -22.080 < 2e-16 ***
## studentYes -6.468e-01 2.363e-01 -2.738 0.00619 **
## balance 5.737e-03 2.319e-04 24.738 < 2e-16 ***
## income 3.033e-06 8.203e-06 0.370 0.71152
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2920.6 on 9999 degrees of freedom
## Residual deviance: 1571.5 on 9996 degrees of freedom
## AIC: 1579.5
##
## Number of Fisher Scoring iterations: 8

(a) What is the estimated equation for this model?

(b) Does an individual’s student status have a statistically significant association with whether
or not they default? Compare your estimate to that from example 2.
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(c) Does an individual’s income have a statistically significant association with whether or not
they default? Compare to your result from example 1.

(d) What is the estimated equation for non-students?

(e) What is the estimated equation for students?

(f) What is the interpretation of the coefficient for studentYes? Note that e−0.6468 ≈ 0.523719.

(g) What is the interpretation of the coefficient for balance? Note that e0.005737 ≈ 1.005753. Is
it helpful to consider that e(0.005737∗100) ≈ 1.775?
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(h) Tests about more than one coefficient

This is a little artificial, but to demonstrate the code let’s consider a test of the hypotheses that neither of
the student and the income variables are related to the probability that a person will default. We will:

• fit a reduced model (similar to what we would do in a lm context)
• call anova to compare the reduced and full model

– Unlike anova comparisons with linear models, we need to specify a test argument to anova. A
common option is test = "LRT" (for likelihood ratio test). This is a large-sample approximate
test procedure (see Stat 343).

fit_reduced <- train(
form = default ~ balance,
data = Default,
family = "binomial", # this is an argument to glm; response is 0 or 1, binomial
method = "glm", # method for fit; "generalized linear model"
trControl = trainControl(method = "none")

)
anova(fit_reduced$finalModel, fit$finalModel, test = "LRT")

## Analysis of Deviance Table
##
## Model 1: .outcome ~ balance
## Model 2: .outcome ~ studentYes + balance + income
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 9998 1596.5
## 2 9996 1571.5 2 24.907 3.904e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Ethical Considerations

In the U.S., there is a history of discrimination against demographic groups in granting loans. The Equal
Credit Opportunity Act was passed in 1974, and “makes it unlawful for any creditor to discriminate
against any applicant, with respect to any aspect of a credit transaction, on the basis of race, color,
religion, national origin, sex, marital status, or age (provided the applicant has the capacity to contract)”
(https://en.wikipedia.org/wiki/Equal_Credit_Opportunity_Act).

Our model uses the covariates balance, income, and student to predict probability of loan default, which
are allowed by the law. However, it’s a fact that some of the covariates in our model (like balance and
income) are correlated with protected characteristics like race, sex, or marital status. At a population level,
the model we’ve developed would deem women and people of color creditworthy at lower rates than other
groups.
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