
KNN Classification
Classification

Our response variable is a category for each observation, not a number.

Example: can we predict party affiliation as a function of age?

We have data including the following variables for each of 944 participants in the 1996 American National Election Study:

• party affiliation (“Dem”, “Ind”, or “Rep”). This is our response variable, yi

• age (range 19 to 91). This is our explanatory variable or feature, xi

nes96 %>%
select(age, party) %>%
head()

age party
1 36 Rep
2 20 Dem
3 24 Dem
4 28 Dem
5 68 Dem
6 21 Dem
nrow(nes96)

[1] 944

Here are the counts of how many participants are in each party:
nes96 %>%

count(party)

A tibble: 3 x 2
party n
<chr> <int>
1 Dem 488
2 Ind 37
3 Rep 419

Train/test split

As with regression, we will evaluate model performance based on a test set.
set.seed(88412)
train_inds <- caret::createDataPartition(nes96$party, p = 0.8)
train_nes96 <- nes96 %>% slice(train_inds[[1]])
test_nes96 <- nes96 %>% slice(-train_inds[[1]])

1

Some plots

A scatter plot isn’t that useful:
ggplot(data = train_nes96, mapping = aes(x = age, y = party)) +

geom_point()

Dem

Ind

Rep

20 40 60 80
age

pa
rt

y

We can jitter the points, but still not that helpful:
ggplot(data = train_nes96, mapping = aes(x = age, y = party, color = party)) +

geom_point(position = position_jitter(height = 0.1)) +
scale_color_manual(values = c("orange", "cornflowerblue", "mediumblue"))

Dem

Ind

Rep

20 40 60 80
age

pa
rt

y

party

Dem

Ind

Rep

2

How about a histogram? postion = "fill" says that within each bin, we want the bars to add up to 100%.
ggplot(data = train_nes96, mapping = aes(x = age, fill = party)) +

geom_histogram(position = "fill") +
scale_fill_manual(values = c("orange", "cornflowerblue", "mediumblue"))

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

0.00

0.25

0.50

0.75

1.00

20 40 60 80
age

co
un

t

party

Dem

Ind

Rep

All of these put our response on the vertical axis, which is the easiest way to think about the model. We could also do
something like a density plot of the explanatory variable colored by the response:
ggplot(data = train_nes96, mapping = aes(x = age, color = party)) +

geom_density() +
scale_color_manual(values = c("orange", "cornflowerblue", "mediumblue"))

0.00

0.01

0.02

20 40 60 80
age

de
ns

ity

party

Dem

Ind

Rep

3

R Code for K Nearest Neighbors for Classification

"train" the KNN model
this code is exactly the same as the code to do KNN regression!
knn_fit <- train(

form = party ~ age,
data = train_nes96,
method = "knn",
preProcess = "scale",
trControl = trainControl(method = "none"),
tuneGrid = data.frame(k = 100)

)

to get estimated class membership probabilities, specify type = "prob" in the predict function
f_hats <- predict(knn_fit, newdata = test_nes96, type = "prob")
head(f_hats)

Dem Ind Rep
1 0.6310680 0.038834951 0.3300971
2 0.5045045 0.045045045 0.4504505
3 0.4690265 0.035398230 0.4955752
4 0.4433962 0.009433962 0.5471698
5 0.6310680 0.038834951 0.3300971
6 0.5488722 0.037593985 0.4135338
to get the most likely class, leave out type or specify type = "raw" (the default)
if the estimated class probability is the same for two classes, ties are broken at random
y_hats <- predict(knn_fit, newdata = test_nes96, type = "raw")
head(y_hats)

[1] Dem Dem Rep Rep Dem Dem
Levels: Dem Ind Rep
classification error rate: what proportion of predicted parties are not equal to the observed party?
mean(y_hats != test_nes96$party)

[1] 0.513369
how does this compare to just predicting the most common class in the training set?
train_nes96 %>% count(party)

A tibble: 3 x 2
party n
<chr> <int>
1 Dem 391
2 Ind 30
3 Rep 336
mean("Dem" != test_nes96$party)

[1] 0.4812834

Our model does slightly better than just guessing the most common party in the training set.

4

Here’s a way to plot class membership probabilities as functions of age. It’s admittedly a little awkward.
predict_knn_probs <- function(x, party) {

f_hats <- predict(knn_fit, newdata = data.frame(age = x), type = "prob")
f_hats[[party]]

}

ggplot(data = nes96, mapping = aes(x = age)) +
stat_function(fun = predict_knn_probs,

args = list(party = "Dem"),
mapping = aes(color = "Dem")) +

stat_function(fun = predict_knn_probs,
args = list(party = "Ind"),
mapping = aes(color = "Ind")) +

stat_function(fun = predict_knn_probs,
args = list(party = "Rep"),
mapping = aes(color = "Rep")) +

scale_color_manual("Party", values = c("orange", "cornflowerblue", "mediumblue")) +
ylim(0, 1)

0.00

0.25

0.50

0.75

1.00

20 40 60 80
age

y

Party

Dem

Ind

Rep

5

Flexibility is determined by k

Here are plots of the estimated class probability functions for several values of k (code suppressed):

0.00
0.25
0.50
0.75
1.00

20 40 60 80
age

y

Party

Dem

Ind

Rep

k = 1

0.00
0.25
0.50
0.75
1.00

20 40 60 80
age

y

Party

Dem

Ind

Rep

k = 5

0.00
0.25
0.50
0.75
1.00

20 40 60 80
age

y

Party

Dem

Ind

Rep

k = 10

0.00
0.25
0.50
0.75
1.00

20 40 60 80
age

y

Party

Dem

Ind

Rep

k = 50

0.00
0.25
0.50
0.75
1.00

20 40 60 80
age

y

Party

Dem

Ind

Rep

k = 100

0.00
0.25
0.50
0.75
1.00

20 40 60 80
age

y

Party

Dem

Ind

Rep

k = 250

Decision Boundaries

We won’t explicitly calculate this for KNN, but it’s nice to have in mind the concept of a decision boundary: the point at
which the predicted value (class with highest estimated probability) changes. I’ve indicated the decision boundaries on the
plot below for k = 250:

0.00

0.25

0.50

0.75

1.00

20 40 60 80
age

y

Party

Dem

Ind

Rep

Note that there are generally fewer decision boundaries as k increases.

6

KNN with 2 features

Suppose we use two variables to predict party affiliation:

• age (range 19 to 91). This is our first explanatory variable or feature, xi1
• popul (range 0 to 7300) population of respondent’s location in 1000s of people. This is our second feature, xi2

With 2 inputs, the estimated class probability functions would have to be visualized in 3 dimensions (age, popul, and
estimated class probability).

Instead, it’s easier to display the decision boundaries in the two-dimensional feature space of values of (age, popul).

The plots below show these for a range of values of k:

0

2000

4000

6000

20 40 60 80
age

po
pu

l

party

Dem

Ind

Rep

est_party

Dem

Ind

Rep

KNN, k = 1

0

2000

4000

6000

20 40 60 80
age

po
pu

l

party

Dem

Ind

Rep

est_party

Dem

Ind

Rep

KNN, k = 5

0

2000

4000

6000

20 40 60 80
age

po
pu

l

est_party

Dem

Rep

party

Dem

Ind

Rep

KNN, k = 10

0

2000

4000

6000

20 40 60 80
age

po
pu

l

est_party

Dem

Rep

party

Dem

Ind

Rep

KNN, k = 50

0

2000

4000

6000

20 40 60 80
age

po
pu

l

est_party

Dem

Rep

party

Dem

Ind

Rep

KNN, k = 100

0

2000

4000

6000

20 40 60 80
age

po
pu

l

est_party

Dem

Rep

party

Dem

Ind

Rep

KNN, k = 250

7

Here’s how you could make one of these plots:
"train" the KNN model
knn_fit <- train(

form = party ~ age + popul,
data = train_nes96,
method = "knn",
preProcess = "scale",
trControl = trainControl(method = "none"),
tuneGrid = data.frame(k = 5)

)

a grid of values for age and popul at which to get the estimated class.
it's not a test data set in the sense that we don't have observations of party to go with these points,
but we will treat it as a "test set" in the sense that we will obtain predictions at these points
test_grid <- expand.grid(

age = seq(from = 19, to = 91, length = 201),
popul = seq(from = 19, to = 7300, length = 201)

)
head(test_grid)

age popul
1 19.00 19
2 19.36 19
3 19.72 19
4 20.08 19
5 20.44 19
6 20.80 19
use predict to find the estimated most likely class at each point in our grid
y_hats <- predict(knn_fit, newdata = test_grid, type = "raw")

add the estimated types into the test_grid data frame
background_knn <- test_grid %>%

mutate(
est_party = y_hats

)

make the plot. geom_raster does the shading in the background, alpha = 0.2 makes it transparent
ggplot() +

geom_raster(data = background_knn,
mapping = aes(x = age, y = popul, fill = est_party), alpha = 0.2) +

geom_point(data = train_nes96, mapping = aes(x = age, y = popul, color = party)) +
scale_color_manual("party", values = c("orange", "cornflowerblue", "mediumblue")) +
scale_fill_manual(values = c("orange", "cornflowerblue", "mediumblue")) +
ggtitle("KNN, k = 5")

0

2000

4000

6000

20 40 60 80
age

po
pu

l

Dem

Ind

Rep

est_party

Dem

Ind

Rep

KNN, k = 5

8

	Classification
	Example: can we predict party affiliation as a function of age?
	R Code for K Nearest Neighbors for Classification
	Flexibility is determined by k
	Decision Boundaries
	KNN with 2 features

