KNN Classification

Classification

Our response variable is a category for each observation, not a number.

Example: can we predict party affiliation as a function of age?

We have data including the following variables for each of 944 participants in the 1996 American National Election Study:
o party affiliation (“Dem”, “Ind”, or “Rep”). This is our response variable, y;
o age (range 19 to 91). This is our explanatory variable or feature, x;

nes96 7,>7
select(age, party) %>%
head ()

#it age party

## 1 36 Rep
## 2 20 Dem
## 3 24 Dem
## 4 28 Dem
## 5 68 Dem
## 6 21 Dem
nrow(nes96)
## [1] 944
Here are the counts of how many participants are in each party:
nes96 7%>%
count (party)

## # A tibble: 3 x 2

##  party n
#i# <chr> <int>
## 1 Dem 488
## 2 Ind 37
## 3 Rep 419

Train/test split
As with regression, we will evaluate model performance based on a test set.

set.seed(88412)

train_inds <- caret::createDataPartition(nes96$party, p = 0.8)
train_nes96 <- nes96 J,>J slice(train_inds[[1]])

test_nes96 <- nes96 7>% slice(-train_inds[[1]])



Some plots

A scatter plot isn’t that useful:

ggplot(data = train_nes96, mapping = aes(x = age, y = party)) +
geom_point ()
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We can jitter the points, but still not that helpful:

ggplot(data = train_nes96, mapping = aes(x = age, y = party, color = party)) +
geom_point(position = position_jitter(height = 0.1)) +
scale_color_manual(values = c("orange", "cornflowerblue", "mediumblue"))
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How about a histogram? postion = "fill" says that within each bin, we want the bars to add up to 100%.

ggplot(data = train_nes96, mapping = aes(x = age, fill = party)) +
geom_histogram(position = "fill") +
scale_fill_manual(values = c("orange", "cornflowerblue", "mediumblue"))

## “stat_bin()" using “bins = 30°. Pick better value with “binwidth.
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All of these put our response on the vertical axis, which is the easiest way to think about the model. We could also do
something like a density plot of the explanatory variable colored by the response:

ggplot(data = train_nes96, mapping = aes(x = age, color = party)) +
geom_density() +

scale_color_manual(values = c("orange", "cornflowerblue", "mediumblue"))
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R Code for K Nearest Neighbors for Classification

# "train" the KNN model
# this code 1is exactly the same as the code to do KNN regression!
knn_fit <- train(

form = party ~ age,

data = train_nes96,

method = "knn",

preProcess = "scale",
trControl = trainControl(method = "none"),
tuneGrid = data.frame(k = 100)
)
# to get estimated class membership probabilities, specify type = "prob" in the predict function

f_hats <- predict(knn_fit, newdata = test_nes96, type = "prob")
head (f_hats)

#it Dem Ind Rep
## 1 0.6310680 0.038834951 0.3300971
## 2 0.5045045 0.045045045 0.4504505
## 3 0.4690265 0.035398230 0.4955752
## 4 0.4433962 0.009433962 0.5471698
## 5 0.6310680 0.038834951 0.3300971
## 6 0.5488722 0.037593985 0.4135338

# to get the most likely class, leave out type or specify type = "raw" (the default)

# if the estimated class probability is the same for two classes, ties are broken at Tandom
y_hats <- predict(knn_fit, newdata = test_nes96, type = "raw"

head(y_hats)

## [1] Dem Dem Rep Rep Dem Dem
## Levels: Dem Ind Rep

# classification error rate: what proportion of predicted parties are not equal to the observed party?
mean(y_hats != test_nes96$party)

## [1] 0.513369

# how does this compare to just predicting the most common class in the training set?
train_nes96 7>, count(party)

## # A tibble: 3 x 2

##  party n
## <chr> <int>
## 1 Dem 391
## 2 Ind 30
## 3 Rep 336
mean("Dem" != test_nes96$party)

## [1] 0.4812834

Our model does slightly better than just guessing the most common party in the training set.



Here’s a way to plot class membership probabilities as functions of age. It’s admittedly a little awkward.

predict_knn_probs <- function(x, party) {
f_hats <- predict(knn_fit, newdata = data.frame(age = x), type = "prob")
f_hats[[partyl]

}

ggplot(data = nes96, mapping = aes(x = age)) +

stat_function(fun = predict_knn_probs,

args = list(party = "Dem"),

mapping = aes(color = "Dem")) +
stat_function(fun = predict_knn_probs,

args = list(party = "Ind"),

mapping = aes(color = "Ind")) +
stat_function(fun = predict_knn_probs,

args = list(party = "Rep"),

mapping = aes(color = "Rep")) +
scale_color_manual ("Party", values = c("orange", "cornflowerblue", "mediumblue")) +
ylim(0, 1)
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Flexibility is determined by k

Here are plots of the estimated class probability functions for several values of k (code suppressed):
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Decision Boundaries

We won’t explicitly calculate this for KNN, but it’s nice to have in mind the concept of a decision boundary: the point at
which the predicted value (class with highest estimated probability) changes. I've indicated the decision boundaries on the

plot below for k£ = 250:
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Note that there are generally fewer decision boundaries as k increases.



KNN with 2 features

Suppose we use two variables to predict party affiliation:

o age (range 19 to 91). This is our first explanatory variable or feature, x;;
o popul (range 0 to 7300) population of respondent’s location in 1000s of people. This is our second feature, x;o

With 2 inputs, the estimated class probability functions would have to be visualized in 3 dimensions (age, popul, and
estimated class probability).

Instead, it’s easier to display the decision boundaries in the two-dimensional feature space of values of (age, popul).
The plots below show these for a range of values of k:
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Here’s how you could make one of these plots:

# "train" the KNN model
knn_fit <- train(
form = party ~ age + popul,
data = train_nes96,
method = "knn",
preProcess = "scale",
trControl = trainControl(method = "none"),
tuneGrid = data.frame(k = 5)

# a grid of wvalues for age and popul at which to get the estimated class.
# it's not a test data set in the sense that we don't have observations of party to go with these points,
# but we will treat it as a "test set"” in the sense that we will obtain predictions at these points
test_grid <- expand.grid(

age = seq(from = 19, to = 91, length = 201),

popul = seq(from = 19, to = 7300, length = 201)
)
head(test_grid)

#H# age popul
## 1 19.00 19
## 2 19.36 19
# 3 19.72 19
## 4 20.08 19
## 5 20.44 19

## 6 20.80 19

# use predict to find the estimated most likely class at each point in our grid
y_hats <- predict(knn_fit, newdata = test_grid, type = "raw"

# add the estimated types into the test_grid data frame
background_knn <- test_grid %>’
mutate (
est_party = y_hats
)

# make the plot. geom_raster does the shading in the background, alpha = 0.2 makes it transparent
ggplot () +
geom_raster(data = background_knn,
mapping = aes(x = age, y = popul, fill = est_party), alpha = 0.2) +
geom_point(data = train_nes96, mapping = aes(x = age, y = popul, color = party)) +

scale_color_manual("party", values = c("orange", "cornflowerblue", "mediumblue")) +
scale_fill_manual(values = c("orange", "cornflowerblue", "mediumblue")) +
ggtitle ("KNN, k = 5")
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