KNN Classification

Classification

Our response variable is a category for each observation, not a number.

Example: can we predict party affiliation as a function of age?

We have data including the following variables for each of 944 participants in the 1996 American National Election Study:
o party affiliation (“Dem”, “Ind”, or “Rep”). This is our response variable, y;
o age (range 19 to 91). This is our explanatory variable or feature, x;

nes96 7,>7
select(age, party) %>%
head ()

#it age party

1 36 Rep
2 20 Dem
3 24 Dem
4 28 Dem
5 68 Dem
6 21 Dem
nrow(nes96)
[1] 944
Here are the counts of how many participants are in each party:
nes96 7%>%
count (party)

A tibble: 3 x 2

party n
#i# <chr> <int>
1 Dem 488
2 Ind 37
3 Rep 419

Train/test split
As with regression, we will evaluate model performance based on a test set.

set.seed(88412)

train_inds <- caret::createDataPartition(nes96$party, p = 0.8)
train_nes96 <- nes96 J,>J slice(train_inds[[1]])

test_nes96 <- nes96 7>% slice(-train_inds[[1]])

Some plots

A scatter plot isn’t that useful:

ggplot(data = train_nes96, mapping = aes(x = age, y = party)) +
geom_point ()

Rep- 000 © 000 o 000
2
E Ind - e 6 o oo [J 000 O 0000 0O [BN J (1] [J (1]
o
Dem - 00 000 00
20 40 60 80
age

We can jitter the points, but still not that helpful:

ggplot(data = train_nes96, mapping = aes(x = age, y = party, color = party)) +
geom_point(position = position_jitter(height = 0.1)) +
scale_color_manual(values = c("orange", "cornflowerblue", "mediumblue"))

o AT MR BT LA 1 4 35,

party
> Dem
< Ind-
g Ind
® Rep
Dem -

20 40 60 80
age

How about a histogram? postion = "fill" says that within each bin, we want the bars to add up to 100%.

ggplot(data = train_nes96, mapping = aes(x = age, fill = party)) +
geom_histogram(position = "fill") +
scale_fill_manual(values = c("orange", "cornflowerblue", "mediumblue"))

“stat_bin()" using “bins = 30°. Pick better value with “binwidth.

1.00-
0.75-
party

1= Dem
= i
3 0.50
(&)

0.25-

0.00-

20 40 60 80
age

All of these put our response on the vertical axis, which is the easiest way to think about the model. We could also do
something like a density plot of the explanatory variable colored by the response:

ggplot(data = train_nes96, mapping = aes(x = age, color = party)) +
geom_density() +

scale_color_manual(values = c("orange", "cornflowerblue", "mediumblue"))

0.02-

density

0.01- |:| Rep

0.00-

20 40 60 80
age

R Code for K Nearest Neighbors for Classification

"train" the KNN model
this code 1is exactly the same as the code to do KNN regression!
knn_fit <- train(

form = party ~ age,

data = train_nes96,

method = "knn",

preProcess = "scale",
trControl = trainControl(method = "none"),
tuneGrid = data.frame(k = 100)
)
to get estimated class membership probabilities, specify type = "prob" in the predict function

f_hats <- predict(knn_fit, newdata = test_nes96, type = "prob")
head (f_hats)

#it Dem Ind Rep
1 0.6310680 0.038834951 0.3300971
2 0.5045045 0.045045045 0.4504505
3 0.4690265 0.035398230 0.4955752
4 0.4433962 0.009433962 0.5471698
5 0.6310680 0.038834951 0.3300971
6 0.5488722 0.037593985 0.4135338

to get the most likely class, leave out type or specify type = "raw" (the default)

if the estimated class probability is the same for two classes, ties are broken at Tandom
y_hats <- predict(knn_fit, newdata = test_nes96, type = "raw"

head(y_hats)

[1] Dem Dem Rep Rep Dem Dem
Levels: Dem Ind Rep

classification error rate: what proportion of predicted parties are not equal to the observed party?
mean(y_hats != test_nes96$party)

[1] 0.513369

how does this compare to just predicting the most common class in the training set?
train_nes96 7>, count(party)

A tibble: 3 x 2

party n
<chr> <int>
1 Dem 391
2 Ind 30
3 Rep 336
mean("Dem" != test_nes96$party)

[1] 0.4812834

Our model does slightly better than just guessing the most common party in the training set.

Here’s a way to plot class membership probabilities as functions of age. It’s admittedly a little awkward.

predict_knn_probs <- function(x, party) {
f_hats <- predict(knn_fit, newdata = data.frame(age = x), type = "prob")
f_hats[[partyl]

}

ggplot(data = nes96, mapping = aes(x = age)) +

stat_function(fun = predict_knn_probs,

args = list(party = "Dem"),

mapping = aes(color = "Dem")) +
stat_function(fun = predict_knn_probs,

args = list(party = "Ind"),

mapping = aes(color = "Ind")) +
stat_function(fun = predict_knn_probs,

args = list(party = "Rep"),

mapping = aes(color = "Rep")) +
scale_color_manual ("Party", values = c("orange", "cornflowerblue", "mediumblue")) +
ylim(0, 1)
1.00-
0.75-
Party
P/&_/—__ Dem
> 0.50-
— Ind
— Rep
0.25-
0.00-
20 40 €0 -

age

Flexibility is determined by k

Here are plots of the estimated class probability functions for several values of k (code suppressed):

k=1
1.00- Party
0.75- Dem
> 0.50-
0.25 - — Ind
0.00- ; } - v — Rep
20 40 60 80
age
k=10
1.00- Party
0.75~ Dem
> 0.50-
0.25 - — Ind
0.00- | } : r — Rep
20 40 60 80
age
k=100
1.00- Party
0.75- Dem
> 0.50- W
0.25 - — Ind
0.00- 7" —~ — , — Rep

20 40 60 80
age

Decision Boundaries

We won’t explicitly calculate this for KNN, but it’s nice to have in mind the concept of a decision boundary: the point at
which the predicted value (class with highest estimated probability) changes. I've indicated the decision boundaries on the

plot below for k£ = 250:

k=5
1.00- Party
0.75~ Dem
> 0.50-
0.25 - — Ind
0.00- ; } : : — Rep
20 40 60 80
age
k=50
1.00- Party
0.75- Dem
> 0.50- W
0.25 - — Ind
0.00- [T TN Rep
20 40 60 80
age
k =250
1.00- Party
0.75- Dem
> 050" ——=_ ————
0.25 - — Ind
0.00- ' t ' — Rep
20 40 60 80
age

1.00 -
0.75-
Party
Dem
>\050' =1 1 I d
W T n
— Rep
0.25-
0.00- +— [

20 40

age

60 80

Note that there are generally fewer decision boundaries as k increases.

KNN with 2 features

Suppose we use two variables to predict party affiliation:

o age (range 19 to 91). This is our first explanatory variable or feature, x;;
o popul (range 0 to 7300) population of respondent’s location in 1000s of people. This is our second feature, x;o

With 2 inputs, the estimated class probability functions would have to be visualized in 3 dimensions (age, popul, and
estimated class probability).

Instead, it’s easier to display the decision boundaries in the two-dimensional feature space of values of (age, popul).
The plots below show these for a range of values of k:

KNN, k=1 KNN, k=5
party party
[] (N J)} [] (N))}
Dem Dem
6000 - Ind 6000 - Ind
_ ® Rep _ ® Rep
3 4000 - 3 4000 -
8' L] 8‘ [)
Q [) Q {)
est_party est_party
2000 - 2000 -
e oo Dem o oe Dem
~ PO o Ind fiiy PO o Ind
0-6:2‘.?3&51&‘;:}1 0- @ RaladelrtPu e
20 40 60 80 Rep 20 40 60 80 Rep
age age
KNN, k =10 KNN, k =50
PY o0 > est_party PY o0 > est_party
6000 - Dem 6000 - Dem
Rep Rep
3 4000- 3 4000~
o L] art o . art
o — party o o party
2000 - Dem 2000 - Dem
» [N) » [N)
Ind Ind
« > 8% o * ¢ PO
0- e:ifi’gaw‘j; e Rep 0- s:ifi'gaw‘j; e Rep
20 40 60 80 20 40 60 80
age age
KNN, k = 100 KNN, k = 250
PY o0 > est_party PY o0 > est_party
6000 - Dem 6000 - Dem
Rep Rep
3 4000~ 3 4000~
o L] art = . art
o — party o o party
2000 - Dem 2000 - Dem
» [N) » [N)
Ind Ind
« 8% o0 ¢ p 8% $®
0- e:ifi’gaw‘j; e Rep 0- s:ifi'gaw‘j; e Rep
20 40 60 80 20 40 60 80
age age

Here’s how you could make one of these plots:

"train" the KNN model
knn_fit <- train(
form = party ~ age + popul,
data = train_nes96,
method = "knn",
preProcess = "scale",
trControl = trainControl(method = "none"),
tuneGrid = data.frame(k = 5)

a grid of wvalues for age and popul at which to get the estimated class.
it's not a test data set in the sense that we don't have observations of party to go with these points,
but we will treat it as a "test set"” in the sense that we will obtain predictions at these points
test_grid <- expand.grid(

age = seq(from = 19, to = 91, length = 201),

popul = seq(from = 19, to = 7300, length = 201)
)
head(test_grid)

#H# age popul
1 19.00 19
2 19.36 19
3 19.72 19
4 20.08 19
5 20.44 19

6 20.80 19

use predict to find the estimated most likely class at each point in our grid
y_hats <- predict(knn_fit, newdata = test_grid, type = "raw"

add the estimated types into the test_grid data frame
background_knn <- test_grid %>’
mutate (
est_party = y_hats
)

make the plot. geom_raster does the shading in the background, alpha = 0.2 makes it transparent
ggplot () +
geom_raster(data = background_knn,
mapping = aes(x = age, y = popul, fill = est_party), alpha = 0.2) +
geom_point(data = train_nes96, mapping = aes(x = age, y = popul, color = party)) +

scale_color_manual("party", values = c("orange", "cornflowerblue", "mediumblue")) +
scale_fill_manual(values = c("orange", "cornflowerblue", "mediumblue")) +
ggtitle ("KNN, k = 5")
KNN, k = 5 Dem
° ° ° ° ° ° ° e Ind
6000 -
® Rep
=]
8_ 4000 - oo
o ® °
2000 - — — — . est_party
o f an® ® o s ° Dem
0- 88 o Coo B8 T‘Q..Ilf'bJK)")ﬂf.&&IbC"%IOWQJN'I‘lﬁ\z...
20 40 60 80 Ind
age Rep

	Classification
	Example: can we predict party affiliation as a function of age?
	R Code for K Nearest Neighbors for Classification
	Flexibility is determined by k
	Decision Boundaries
	KNN with 2 features

