Transformations

Reminder of Linear Model Assumptions (and Why)

- 1. Relationship is linear
 - Critical if we're using a line, but...
 - If not, can fit a polynomial or use other methods discussed later in this class
- 2. Observations are independent
 - Necessary for inference (hypothesis test results and confidence intervals) to be correct
 - Predictions could still be OK: as $n \to \infty$, we still will recover the correct relationship between explanatory and response variables
- 3. Residuals follow a normal distribution
 - Necessary for hypothesis test results and confidence intervals to be correct
 - Mild skewness or short tails are OK if sample size is moderately large. Heavy tails or extreme skewness are problematic.
 - Predictions could still be OK: as $n \to \infty$, we still will recover the correct relationship between explanatory and response variables
 - If residual distribution is not normal, estimation methods other than least squares could have lower variance
- 4. Residuals have equal variance for all observations (homoskedastic)
 - Necessary for hypothesis test results and confidence intervals to be correct
 - Predictions could still be OK: as $n \to \infty$, we still will recover the correct relationship between explanatory and response variables
 - Estimation methods other than least squares could result in lower variance
- 5. No outliers/observations with high leverage
 - Could result in incorrect inferences and predictions, especially if n is small.

Summary: Mostly, these problems result in...

- A loss of guarantees of correct Type I Error rates for hypothesis tests
- A loss of guarantees of correct coverage rates for confidence intervals
- Higher-than-necessary variance for parameter estimates and predictions

Our Goal:

- Fix problems with residuals (non-normal, heteroskedastic/unequal variance), and maybe also outliers.
- As a side effect, sometimes also make relationships more linear

Method: Transform the variables.

The Ladder of Powers for Transformations

• Imagine a "ladder of powers" of y (or x): We start at y and go up or down the ladder.

Transformation	R Code	Comments
:		
e^y	exp(y)	Exactly where on the ladder the exponential transformation belongs depends on the magnitude of the data, but somewhere around here
y^2	y^2	
\overline{y}		Start here (no transformation)
\sqrt{y}	sqrt(y)	
y"0"	log(y)	We use $log(y)$ here
${}$ $-1/\sqrt{y}$	-1/sqrt(y)	The $-$ keeps the values of y in order
${-1/y}$	-1/y	
$-1/y^2$	-1/y^2	
:		

- Which direction?
 - If a variable is skewed right, move it down the ladder (pull down large values)
 - If a variable is skewed left, move it up the ladder (pull up small values)

Moved Up 2 Steps: spread out points on the right side

Moved Up 1 Step: spread out points on the right side

Starting Point: evenly spaced

Moved Down 1 Step: spread out points on the left side

Moved Down 2 Steps: spread out points on the left side

What to do is based on scatter plots

Figure from The Statistical Sleuth.

Start with the response

Start exploring transformations by looking at the response variable, looking to fix: * Residuals skewed * Non-constant variance (heteroskedasticity)

Example

Let's look at modeling a movie's international gross earnings in inflation-adjusted 2013 dollars (intgross_2013). For today, let's just think about using a single quantitative explanatory variable, budget_2013.

Here we read the data in and fit a simple linear regression model.

```
library(readr)
library(dplyr)
library(ggplot2) # general plotting functionality
library(GGally) # includes the ggpairs function, pairs plots via ggplot2
library(gridExtra) # for grid.arrange, which arranges the plots next to each other

options(na.action = na.exclude, digits = 7)

movies <- read_csv("http://www.evanlray.com/data/bechdel/bechdel.csv") %>%
  filter(mpaa_rating %in% c("G", "PG", "PG-13", "R"),
    !is.na(intgross_2013),
  !is.na(budget_2013))
```

Function for Model Fitting and Plotting Diagnostics

We're about to fit a bunch of different models and look at residual diagnostic plots for them all. Since we want to do slight variations on the same thing a bunch of times, we should make a function!

```
#' Fit a linear model with specified response and explanatory variables in the movies data set
#'
#' @param response character: response variable name
#' Oparam explanatory character: explanatory variable name
fit_model_and_make_plots <- function(response, explanatory) {</pre>
 fit_formula <- as.formula(pasteO(response, " ~ ", explanatory))</pre>
 fit <- lm(fit_formula, data = movies)</pre>
 movies <- movies %>%
   mutate(
     residuals = residuals(fit),
     fitted = predict(fit)
   )
 p1 <- ggplot(data = movies, mapping = aes_string(x = explanatory, y = response)) +
   geom_point() +
    geom_smooth() +
   geom_smooth(method = "lm", color = "orange", se = FALSE) +
   ggtitle("Response vs. Explanatory")
 p2 <- ggplot(data = movies, mapping = aes_string(x = explanatory, y = "residuals")) +
   geom_point() +
   geom_smooth() +
   ggtitle("Residuals vs. Explanatory")
 p3 <- ggplot(data = movies, mapping = aes(x = residuals)) +
   geom_density() +
   ggtitle("Residuals")
 p4 <- ggplot(data = movies, mapping = aes(sample = residuals)) +
   stat_qq() +
    stat_qq_line() +
   ggtitle("Residuals Q-Q")
```

```
p5 <- ggplot(data = movies, mapping = aes_string(x = explanatory)) +
    geom_density() +
    ggtitle("Explanatory")

p6 <- ggplot(data = movies, mapping = aes_string(x = response)) +
    geom_density() +
    ggtitle("Response")

grid.arrange(p1, p2, p3, p4, p5, p6, ncol = 2)
}</pre>
```

Linear Fit

In our example, what are the problems and how are we going to fix them?

Trying $\sqrt{\text{intgross}}$ 2013

What do we think?

Trying $log(intgross_2013)$

What do we think?

Trying intgross $_2013^{0.25}$

```
movies <- movies %>% mutate(
  intgross_2013_0.25 = intgross_2013^{0.25}
)
fit_model_and_make_plots(response = "intgross_2013_0.25", explanatory = "budget_2013")
   'geom_smooth()' using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
   'geom_smooth()' using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
intgross_2013_0.25
       Response vs. Explanatory
                                                           Residuals vs. Explanatory
                                                      150 -
                                                  residuals
                                                      100 -
                                                       50 -
                                                        0 -
   100 -
                                                      -50 -
                                                     -100 -
     0 -
                              3e+08
                                      4e+08
                      2e+08
                                                                 1e+08 2e+08
                                                                                 3e+08
                                                                                         4e+08
              1e+08
                                                         0e+00
                    budget_2013
                                                                        budget_2013
         Residuals
                                                         Residuals Q-Q
                                                     150 -
  0.015 -
                                                  density
   0.010 -
   0.005 -
                                                     -50
   0.000 -
                              50
                                      100
                                                                                        2
              -50
                                                                  <u>-</u>2
                                                                             Ö
                       Ö
                                              150
                        residuals
                                                                        theoretical
         Explanatory
                                                           Response
                                                     0.012 -
density
5e-09 -
                                                  density
0.000 -
0.000 -
0.003 -
   0e+00
                                                     0.000 -
                       2e+08 3e+08
                                                                  50
                                                                                  150
                                                                          100
                                                                                         200
                1e+08
        0e+00
                                       4e+08
                                                           0
                      budget 2013
                                                                    intgross_2013_0.25
```

Transformations of both variables...

```
movies <- movies %>% mutate(
   intgross_2013_0.25 = intgross_2013^{0.25},
  budget_2013_0.25 = budget_2013^{0.25}
fit_model_and_make_plots(response = "intgross_2013_0.25", explanatory = "budget_2013_0.25")
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
    'geom_smooth()' using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
intgross_2013_0.25
        Response vs. Explanatory
                                                             Residuals vs. Explanatory
   200 -
150 -
100 -
50 -
                                                     residuals
                                                        100 -
                                                         50
                                                        -50
                                  100
                                                150
                                                                                       100
                    50
                                                                                                     150
                   budget_2013_0.25
                                                                        budget_2013_0.25
                                                             Residuals Q-Q
         Residuals
density
0.010 -
0.005 -
                                                     samble
-00
-00
-50
                                                        -50
   0.000
                                         100
              -50
                                 50
                                                                      -2
                                                                                             2
                                                                                  ò
                         residuals
                                                                            theoretical
         Explanatory
                                                              Response
                                                        0.012 -
density
0.015 -
0.010 -
0.005 -
                                                     density
0.000 -
0.000 -
0.003 -
   0.000
                                                        0.000
                                  100
                                                                                      150
                                                                              100
                                                150
                    budget_2013_0.25
                                                                        intgross_2013_0.25
```

Making Predictions in Models with Transformed Variables

- You need to give your model transformed x's to generate predictions
- You usually want predictions for the response on the original (untransformed) scale.

Here's an example of making predictions for test set observations and finding MSE on original scale:

```
# train/test split
set.seed(29347)
train_inds <- caret::createDataPartition(movies$intgross_2013, p = 0.8)</pre>
train_movies <- movies %>% slice(train_inds[[1]])
test_movies <- movies %>% slice(-train_inds[[1]])
# transformation for train data
train_movies <- train_movies %>%
  mutate(
    intgross_2013_0.25 = intgross_2013^{0.25},
    budget_2013_0.25 = budget_2013^{0.25}
  )
# note: for the test set I only need to apply transformations to explanatory variables
# since I will evaluate predictions for the response on the original data scale.
test_movies <- test_movies %>%
  mutate(
    budget_2013_0.25 = budget_2013^{0.25}
  )
# fit to transformed data on training set
fit <- lm(intgross_2013_0.25 ~ budget_2013_0.25, data = train_movies)
# predictions based on transformed budget for the test set
# the result is a prediction of (intgross_2013) ~0.25
predicted_intgross_2013_0.25 <- predict(fit, newdata = test_movies)</pre>
# undo the transformation of the response to get predictions of intgross_2013
predicted_intgross_2013 <- predicted_intgross_2013_0.25^4</pre>
# calculate MSE
mean((test_movies$intgross_2013 - predicted_intgross_2013)^2)
## [1] 6.524786e+16
# That's so big, how about its square root (RMSE)
sqrt(mean((test_movies$intgross_2013 - predicted_intgross_2013)^2))
## [1] 255436612
Rough interpretation: on average, test set predictions are off by about $255 million.
You also have to take care when making plots:
predict_transformed_scale <- function(x) {</pre>
  pred_0.25 \leftarrow predict(fit, data.frame(budget_2013_0.25 = x^{(0.25)})
  return(pred_0.25<sup>4</sup>)
}
ggplot(data = movies, mapping = aes(y = intgross_2013, x = budget_2013)) +
  geom_point() +
  stat function(fun = predict transformed scale) +
  geom_smooth(method = "lm", color = "orange", se = FALSE)
```


An effect of fitting to transformed data was to reduce the influence of those outlying observations on the line.

Transformations may or may not help test set predictive performance

Here we fit a linear regression model without transformations and get lower test set (R)MSE.

```
# fit to transformed data on training set
fit <- lm(intgross_2013 ~ budget_2013, data = train_movies)

# predictions based on transformed budget for the test set
# the result is a prediction of (intgross_2013) ~ 0.25
predicted_intgross_2013 <- predict(fit, newdata = test_movies)

# calculate MSE
mean((test_movies$intgross_2013 - predicted_intgross_2013) ~ 2)

## [1] 5.723862e+16

# That's so big, how about its square root (RMSE)
sqrt(mean((test_movies$intgross_2013 - predicted_intgross_2013) ~ 2))</pre>
```

[1] 239245949