Transformations

Reminder of Linear Model Assumptions (and Why)

1. Relationship is linear
o Critical if we're using a line, but. ..
o If not, can fit a polynomial or use other methods discussed later in this class
2. Observations are independent
o Necessary for inference (hypothesis test results and confidence intervals) to be correct
o Predictions could still be OK: as n — oo, we still will recover the correct relationship between explanatory and
response variables
3. Residuals follow a normal distribution
e Necessary for hypothesis test results and confidence intervals to be correct
— Mild skewness or short tails are OK if sample size is moderately large. Heavy tails or extreme skewness are
problematic.
o Predictions could still be OK: as n — oo, we still will recover the correct relationship between explanatory and
response variables
e If residual distribution is not normal, estimation methods other than least squares could have lower variance
4. Residuals have equal variance for all observations (homoskedastic)
e Necessary for hypothesis test results and confidence intervals to be correct
o Predictions could still be OK: as n — oo, we still will recover the correct relationship between explanatory and
response variables
o Estimation methods other than least squares could result in lower variance
5. No outliers/observations with high leverage
e Could result in incorrect inferences and predictions, especially if n is small.

Summary: Mostly, these problems result in. ..

e A loss of guarantees of correct Type I Error rates for hypothesis tests
o A loss of guarantees of correct coverage rates for confidence intervals
o Higher-than-necessary variance for parameter estimates and predictions

Our Goal:

o Fix problems with residuals (non-normal, heteroskedastic/unequal variance), and maybe also outliers.
o As a side effect, sometimes also make relationships more linear

Method: Transform the variables.



The Ladder of Powers for Transformations

o Imagine a “ladder of powers” of y (or x): We start at y and go up or down the ladder.

Transformation R Code Comments

ey exp (y) Exactly where on the ladder the exponential trans-
formation belongs depends on the magnitude of the
data, but somewhere around here...

y? yo2
Start here (no transformation)
VY sqrt (y)
y'0 log(y) We use log(y) here
-1/\/y -1/sqrt(y) The — keeps the values of y in order
—-1/y -1/y
—1/y? -1/y72

e Which direction?
— If a variable is skewed right, move it down the ladder (pull down large values)
— If a variable is skewed left, move it up the ladder (pull up small values)

Moved Up 2 Steps: spread out points on the right side

0 20 40 60
y_cubed

Moved Up 1 Step: spread out points on the right side

4 8 12 16
y_squared

Starting Point: evenly spaced

1 2 3 4
y

Moved Down 1 Step: spread out points on the left side

1.00 1.25 1.50 1.75 2.00
sqrt_y

Moved Down 2 Steps: spread out points on the left side

0.0 0.5 1.0
log_y



What to do is based on scatter plots
Figure from The Statistical Sleuth.

Some hypothetical scatterplots of response versus explanatory variable with suggested courses
of action; (a) is ideal

DISPLAY 8.6

1 1
(a) _/Visualize the distributions of (b) Transform X
\_responses in vertical strips. ) .

Means? straight line

L Means? curved
. SDs ? about equal

SDs? about equal

(d) Transform Y *

Means? curved
SDs? increasing

. . Means? curved
. SDs ? about equal .
(e) Report Skewness ) (f) Use Weighted Regression *
(or try transforming both X and Y

. Means? straight line
SDs? increasing

Means? straight line
SDs? about equal

Start with the response

Start exploring transformations by looking at the response variable, looking to fix: * Residuals skewed * Non-constant
variance (heteroskedasticity)



Example

Let’s look at modeling a movie’s international gross earnings in inflation-adjusted 2013 dollars (intgross_2013). For
today, let’s just think about using a single quantitative explanatory variable, budget_2013.

Here we read the data in and fit a simple linear regression model.

library(readr)

library(dplyr)

library(ggplot2) # general plotting functionality

library(GGally) # includes the ggpairs function, pairs plots via ggplot2
library(gridExtra) # for grid.arrange, which arranges the plots next to each other

options(na.action = na.exclude, digits = 7)

movies <- read_csv("http://www.evanlray.com/data/bechdel/bechdel.csv") %>%
filter(mpaa_rating %in’ c("G", "PG", "PG-13", "R"),
lis.na(intgross_2013),
lis.na(budget_2013))

Function for Model Fitting and Plotting Diagnostics

We're about to fit a bunch of different models and look at residual diagnostic plots for them all. Since we want to do slight
variations on the same thing a bunch of times, we should make a function!

#' Fit a linear model with specified response and explanatory variables in the movies data set
#I
#' @param response character: response vartable name
#' @param explanatory character: explanatory wvariable name
fit_model_and_make_plots <- function(response, explanatory) {
fit_formula <- as.formula(pasteO(response, " ~ ", explanatory))
fit <- Im(fit_formula, data = movies)

movies <- movies %>%
mutate (
residuals = residuals(fit),
fitted = predict(fit)
)

pl <- ggplot(data = movies, mapping = aes_string(x = explanatory, y = response)) +
geom_point () +
geom_smooth() +
geom_smooth(method = "1m", color = "orange", se = FALSE) +
ggtitle("Response vs. Explanatory")

p2 <- ggplot(data = movies, mapping = aes_string(x = explanatory, y = "residuals")) +
geom_point () +
geom_smooth() +
ggtitle("Residuals vs. Explanatory")

p3 <- ggplot(data = movies, mapping = aes(x = residuals)) +
geom_density() +
ggtitle("Residuals")

p4 <- ggplot(data = movies, mapping = aes(sample = residuals)) +
stat_qq() +
stat_qq_line() +
ggtitle("Residuals Q-Q")



p5 <- ggplot(data = movies, mapping = aes_string(x = explanatory)) +
geom_density() +
ggtitle ("Explanatory")

p6 <- ggplot(data = movies, mapping
geom_density() +
ggtitle ("Response")

aes_string(x = response)) +

grid.arrange(pl, p2, p3, p4, p5, p6, ncol = 2)
}

Linear Fit

fit_model_and_make_plots(response = "intgross_2013", explanatory = "budget_2013")

## ~geom_smooth()” using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
## ~geom_smooth()” using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
- Response vs. Explanatory Residuals vs. Explanatory
S 3e+09- e - o 309 e m
~ < i
o 26+09- o @@ g 2e+09 :o.. ° °
» O 1e+09-
© let+09- g 06+00 -
£ 0e+00- = €
= Oe+00 1e+08 2e+08 3e+08 4e+08 Oe+OO 1e+08 2e+08 3e+08 4e+08
budget 2013 budget 2013
Residuals Residuals Q-Q
6e—-09 - 3e+09 - .
£ 4e-09- 3 2e+09- 3
T 2e-09- § 1e+09-
© » 0e+00 -
Oe+00- 1 1 1 1 . 1 1 1
0e+00 le+09 2e+09 3e+0¢ -2 0 2
residuals theoretical
Explanatory Response
4e-09 -
2> 1le-08- >
: =
5e-09 - e-U9-
S S 1e-09-
0e+00- © 0e+00- * - - -
0e+00 1e+08 Ze+O8 3e+08 4e+08 0e+00 1le+09 2e+09 3e+09
budget 2013 intgross_2013

In our example, what are the problems and how are we going to fix them?



Trying +/intgross_ 2013

movies <- movies %>’ mutate(
sqrt_intgross_2013 = sqrt(intgross_2013)
)

fit_model_and_make_plots(response = "sqrt_intgross_2013", explanatory = "budget_2013")

## ~geom_smooth()” using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
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What do we think?



Trying log(intgross_ 2013)

movies <- movies %>’ mutate(

log_intgross_2013 = log(intgross_2013)

)

fit_model_and_make_plots(response

## ~geom_smooth()” using method
## ~geom_smooth()” using method

= "log_intgross_2013", explanatory = "budget_2013")
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Trying intgross_ 2013%%°

movies <- movies %>’ mutate(
intgross_2013_0.25 = intgross_20137{0.25}
)

fit_model_and_make_plots(response = "intgross_2013_0.25", explanatory = "budget_2013")

## ~geom_smooth()” using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
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Transformations of both variables. ..

movies <- movies %>’ mutate(
intgross_2013_0.25 = intgross_20137{0.25%},
budget_2013_0.25 = budget_2013"{0.25}

)

fit_model_and_make_plots(response = "intgross_2013_0.25", explanatory = "budget_2013_0.25")

## ~geom_smooth()” using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
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Making Predictions in Models with Transformed Variables

e You need to give your model transformed x’s to generate predictions
» You usually want predictions for the response on the original (untransformed) scale.

Here’s an example of making predictions for test set observations and finding MSE on original scale:

# train/test split

set.seed(29347)

train_inds <- caret::createDataPartition(movies$intgross_2013, p = 0.8)
train_movies <- movies %>% slice(train_inds([[1]])

test_movies <- movies %>}, slice(-train_inds[[1]])

# transformation for train data
train_movies <- train_movies %>
mutate (
intgross_2013_0.25 = intgross_20137{0.25},
budget_2013_0.25 = budget_2013"{0.25}
)

# note: for the test set I only need to apply transformations to explanatory variables
# since I will evaluate predictions for the response on the original data scale.
test_movies <- test_movies >
mutate (
budget_2013_0.25 = budget_20137{0.25}
)

# fit to transformed data on training set
fit <- lm(intgross_2013_0.25 ~ budget_2013_0.25, data = train_movies)

# predictions based on transformed budget for the test set
# the result s a prediction of (intgross_2013) 0.25
predicted_intgross_2013_0.25 <- predict(fit, newdata = test_movies)

# undo the transformation of the response to get predictions of intgross_2013
predicted_intgross_2013 <- predicted_intgross_2013_0.2574

# calculate MSE
mean((test_movies$intgross_2013 - predicted_intgross_2013)72)

## [1] 6.524786e+16

# That's so big, how about its square root (RMSE)
sqrt (mean((test_movies$intgross_2013 - predicted_intgross_2013)72))

## [1] 255436612
Rough interpretation: on average, test set predictions are off by about $255 million.

You also have to take care when making plots:

predict_transformed_scale <- function(x) {
pred_0.25 <- predict(fit, data.frame(budget_2013_0.25 = x7{0.25}))
return(pred_0.2574)

}

ggplot(data = movies, mapping = aes(y = intgross_2013, x = budget_2013)) +
geom_point () +
stat_function(fun = predict_transformed_scale) +
geom_smooth(method = "Im", color = "orange", se = FALSE)
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An effect of fitting to transformed data was to reduce the influence of those outlying observations on the line.

Transformations may or may not help test set predictive performance

Here we fit a linear regression model without transformations and get lower test set (R)MSE.

# fit to transformed data on training set
fit <- lm(intgross_2013 ~ budget_2013, data = train_movies)

# predictions based on transformed budget for the test set
# the result is a prediction of (intgross_2013) 70.25
predicted_intgross_2013 <- predict(fit, newdata = test_movies)

# calculate MSE
mean((test_movies$intgross_2013 - predicted_intgross_2013)72)

## [1] 5.723862e+16

# That's so big, how about its square root (RMSE)
sqrt (mean((test_movies$intgross_2013 - predicted_intgross_2013)72))

## [1] 239245949
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