Expected Test Set MSE, Bias/Variance Trade-Off

Evan L. Ray September 23, 2019

Running Example Set Up

Consider a polynomial regression problem where the data are generated from

$$y_i = 0.001 + 0.005x_i - 0.005x_i^2 + 0.0002x_i^3 + \varepsilon_i$$

 $\varepsilon_i \sim \text{Normal}(0, 0.4^2)$

Polynomial Fits of Degree 1, 3, and 15

Polynomial Fits of Degree 1, 3, and 15

Here are fits to a second randomly generated training set.

Polynomial Fits of Degree 1, 3, and 15

Here's what fits look like across 100 randomly generated training samples.

- Bias: Average (across training sets) value of prediction minus true function value
 - For many values of x, Degree 1 fit is biased
 - Degree 3 and 15 fits are unbiased
- Variance: Variability of predicted values across training sets
 - Degree 15 fit has high variance
 - Degree 1 and 3 fits have lower variance

Performance at a test point

We focus on measuring performance of our models at a particular input value, say $x_0 = 20$.

Performance for Degree 1

We record 3 things:

- 1. Difference between test observation and fitted value: $y_0 \hat{y}_0$
 - Average of squared values across all train/test samples is Expected test MSE
- 2. Difference between fitted value and true function value: $\hat{y}_0 f(x_0)$
 - Average across all train/test samples is the **Bias**
 - Variance across all train/test samples is the Variance
- 3. Difference between test observation and true function: $y_0 f(x_0)$.
 - Variance across all test samples is the **Model Error** (same as $Var(\varepsilon)$)

Performance on 10,000 samples

A tibble: 3 x 6

##		degree	Expected_test_MSE	Bias	Variance	Model_Error	Bias2_Var_Model_E
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	1	0.306	0.365	0.0110	0.164	0.308
##	2	3	0.184	0.00181	0.0208	0.164	0.185
##	3	15	0.246	0.000988	0.0823	0.164	0.246