
Design Matrices without Full Column Rank
The Problem

In our derivation of the least squares estimates for linear regression, we took the derivatives of the residual
sum of squares with respect to each of β0, . . . , βp, set the results equal to 0, and figured out how to write the
results in terms of matrices. We arrived at this point:

(X ′X)β̂ = X ′y

In order to solve for beta, we multiplied on the left by (X ′X)−1 to obtain

β̂ = (X ′X)−1X ′y

This is only possible if X ′X has full rank, which is the case if and only if X has full column rank.

So, what are some examples of settings where X doesn’t have full rank?

Example 1: Not enough distinct values of x

Suppose that we have the following data set, and we want to fit a simple linear regression model:
example_data

## x y
## 1 2 2
## 2 2 4
## 3 2 5
ggplot(data = example_data, mapping = aes(x = x, y = y)) +

geom_point() +
xlim(c(0, 5)) +
ylim(c(0, 5)) +
theme_bw()
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What happens if we try to do estimation?
lm_fit <- lm(y ~ x, data = example_data)
summary(lm_fit)

##
## Call:
## lm(formula = y ~ x, data = example_data)
##
## Residuals:
## 1 2 3
## -1.6667 0.3333 1.3333
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.6667 0.8819 4.158 0.0533 .
## x NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.528 on 2 degrees of freedom
X <- model.matrix(lm_fit)
t(X) %*% X

## (Intercept) x
## (Intercept) 3 6
## x 6 12
solve(t(X) %*% X)

## Error in solve.default(t(X) %*% X): Lapack routine dgesv: system is exactly singular: U[2,2] = 0

What’s going on?

• There are many possible lines that fit the data
• The slope and intercept parameters are not identifiable from the data we have

ggplot(data = example_data, mapping = aes(x = x, y = y)) +
geom_point() +
geom_abline(intercept = 3.6667, slope = 0, size = 1.5) +
geom_abline(intercept = 2.6667, slope = 0.5, color = "cornflowerblue", linetype = 2, size = 1.5) +
geom_abline(intercept = 7.6667, slope = -2, color = "orange", linetype = 3, size = 1.5) +
xlim(c(0, 5)) +
ylim(c(0, 5)) +
theme_bw()
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Notice that the fitted values are the same for all of these three lines:
beta_hat1 <- matrix(c(3.6667, 0))
y_hat1 <- X %*% beta_hat1
y_hat1

## [,1]
## 1 3.6667
## 2 3.6667
## 3 3.6667
beta_hat2 <- matrix(c(2.6667, 0.5))
y_hat2 <- X %*% beta_hat2
y_hat2

## [,1]
## 1 3.6667
## 2 3.6667
## 3 3.6667
beta_hat3 <- matrix(c(7.6667, -2))
y_hat3 <- X %*% beta_hat3
y_hat3

## [,1]
## 1 3.6667
## 2 3.6667
## 3 3.6667

In turn, the residual sums of squares are the same for all three lines too:
sum((example_data$y - y_hat1)^2)

## [1] 4.666667
sum((example_data$y - y_hat2)^2)

## [1] 4.666667
sum((example_data$y - y_hat3)^2)

## [1] 4.666667
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Example 2: Multiple Regression with Redundant Covariates

The Current Population Survey (CPS) is used to supplement census information between census years.
These data consist of a random sample of persons from the 1985 CPS, with information on wages and
other characteristics of the workers, including sex, number of years of education, years of work experience,
occupational status, region of residence and union membership.

Suppose we fit a model for wage (in US dollars per hour) based on the following explanatory variables:

• educ number of years of education
• age age in years
• exper number of years of work experience (inferred from age and educ)
• married a factor with levels Married, Single
• sector a factor with levels clerical, const, manag, manuf, other, prof, sales, service

head(CPS85)

## wage educ age exper married sector
## 1 9.0 10 43 27 Married const
## 2 5.5 12 38 20 Married sales
## 3 3.8 12 22 4 Single sales
## 4 10.5 12 47 29 Married clerical
## 5 15.0 12 58 40 Married const
## 6 9.0 16 49 27 Married clerical
lm_fit <- lm(wage ~ educ + age + exper + married + sector, data = CPS85)
summary(lm_fit)

##
## Call:
## lm(formula = wage ~ educ + age + exper + married + sector, data = CPS85)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.456 -2.841 -0.712 1.876 34.115
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.31556 1.59566 -2.705 0.00706 **
## educ 0.65293 0.09605 6.798 2.91e-11 ***
## age 0.09436 0.01753 5.382 1.11e-07 ***
## exper NA NA NA NA
## marriedSingle -0.39608 0.42309 -0.936 0.34962
## sectorconst 3.00449 1.09875 2.734 0.00646 **
## sectormanag 3.97363 0.76582 5.189 3.04e-07 ***
## sectormanuf 1.67249 0.71946 2.325 0.02047 *
## sectorother 2.13155 0.71153 2.996 0.00287 **
## sectorprof 2.67365 0.67853 3.940 9.24e-05 ***
## sectorsales -0.17695 0.84902 -0.208 0.83499
## sectorservice -0.12186 0.67318 -0.181 0.85642
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.421 on 522 degrees of freedom
## Multiple R-squared: 0.2752, Adjusted R-squared: 0.2613
## F-statistic: 19.82 on 10 and 522 DF, p-value: < 2.2e-16
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X <- model.matrix(lm_fit)
head(X)

## (Intercept) educ age exper marriedSingle sectorconst sectormanag sectormanuf sectorother sectorprof sectorsales sectorservice
## 1 1 10 43 27 0 1 0 0 0 0 0 0
## 2 1 12 38 20 0 0 0 0 0 0 1 0
## 3 1 12 22 4 1 0 0 0 0 0 1 0
## 4 1 12 47 29 0 0 0 0 0 0 0 0
## 5 1 12 58 40 0 1 0 0 0 0 0 0
## 6 1 16 49 27 0 0 0 0 0 0 0 0
solve(t(X) %*% X)

## Error in solve.default(t(X) %*% X): system is computationally singular: reciprocal condition number = 4.82426e-19

What’s going on?

exper was inferred from age and educ, assuming everyone started school at age 6 and started getting job
experience immediately after leaving school:
exper_is_made_up <- cbind(

CPS85$exper,
CPS85$age - CPS85$educ - 6

)

head(exper_is_made_up)

## [,1] [,2]
## [1,] 27 27
## [2,] 20 20
## [3,] 4 4
## [4,] 29 29
## [5,] 40 40
## [6,] 27 27

This means the fourth column of X is equal to a linear combination of the first three columns:
X_is_not_full_rank <- cbind(

X[, 3] - X[, 2] - 6 * X[, 1],
X[, 4]

)
head(X_is_not_full_rank)

## [,1] [,2]
## 1 27 27
## 2 20 20
## 3 4 4
## 4 29 29
## 5 40 40
## 6 27 27
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Once again, this means that we can get the same fitted values (and therefore the same residual sum of
squares) from different coefficients for those variables:
cbind(beta_hat1, beta_hat2)

## [,1] [,2]
## [1,] -4.31555602 -3.74940308
## [2,] 0.65293313 0.74729196
## [3,] 0.09435882 0.00000000
## [4,] 0.00000000 0.09435882
## [5,] -0.39608164 -0.39608164
## [6,] 3.00448959 3.00448959
## [7,] 3.97363158 3.97363158
## [8,] 1.67248889 1.67248889
## [9,] 2.13154511 2.13154511
## [10,] 2.67364689 2.67364689
## [11,] -0.17694859 -0.17694859
## [12,] -0.12185820 -0.12185820
y_hat1 <- X %*% beta_hat1
y_hat2 <- X %*% beta_hat2

same_fitted_values <- cbind(y_hat1, y_hat2)
head(same_fitted_values)

## [,1] [,2]
## 1 9.275694 9.275694
## 2 6.928328 6.928328
## 3 5.022505 5.022505
## 4 7.954506 7.954506
## 5 11.996943 11.996943
## 6 10.754956 10.754956

Summary

A few ways to think about when you might have a design matrix that isn’t full rank:

1) There is some redundancy in the explanatory variables

2) There isn’t enough information in your data to learn about the relationship you’re interested in (e.g. we
can’t separate the effects of several closely related variables because they are linear functions of each
other).

3) Multiple different coefficient values can explain the observed data equally as well (same fitted values, so
same RSS).

• The model parameters are not identifiable.

Roughly, model parameters are identifiable if there is a unique set of parameter values that explains the
observed data best.

In the case of linear regression, model parameters are identifiable if there is a unique set of parameter values
that minimize RSS.
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