Residuals for "Simple" Linear Regression

Oct. 16 2019 – Sleuth 3 Sections 7.3.1, 7.3.4, and 7.4.3

Previously

- Observations follow a normal distribution with mean that is a linear function of the explanatory variable
- A few ways of writing this:
 - Y follows a normal distribution with mean $\mu = \beta_0 + \beta_1 X$
 - $-Y_i \sim \text{Normal}(\beta_0 + \beta_1 X_i, \sigma)$
 - $-Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$, where $\varepsilon_i \sim \text{Normal}(, \sigma)$
- The last topic we covered was confidence intervals for the mean response at a given value of X:
 - We are 95% confident that the mean air time for flights travelling 589 miles is between 98.1 min and 104.2 min.
 We are 95% confident that at every distance, the population mean air time at that distance is within the Color of the second second

Scheffe-adjusted confidence bands.

Today

- Individual responses don't fall exactly at the mean. We can quantify how far from the line observations tend to fall
- After today, you should be able to:
 - Calculate a residual from a simple linear regression model fit
 - Know that the coefficient estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ are found by minimizing the sum of squared residuals
 - Use the residual standard error to get a rough sense of how close points tend to fall to the line
 - Find and interpret a prediction interval using R commands
 - Understand why prediction intervals are wider than confidence intervals

Example Data Set: US News and World Reports 2013 College Statistics

Across colleges in the US, we have measurements of (among other variables):

- Acceptance rate (what proportion of applicants are admitted)
- Graduation rate (what proportion of students graduate within 6 years)

Let's study the association between the acceptance rate (explanatory) and graduation rate (response).

	rollment Ac	ceptance Re	etention	Grad			
<dbl></dbl>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>			
1 40170 2 42292	19726	0.079	0.90	0.90			
3 44000	11906	0.071	0.99	0.96			
4 49138	23168	0.074	0.99	0.97			
5 43245	18217	0.066	0.98	0.95			
6 46386	12508	0.132	0.99	0.92			
.925 -		• •	•	• •	•		_
0.900 - 0.875 -							•
.900 -	0.10)	0.15		0.20	0.25	•
.900 - .875 -	0.10)	0.15 Ac	ceptance	0.20	0.25	•
.900 - .875 -	0.10 .m(Grad ~ Ac) ceptance, d	0.15 Ac	ceptance	0.20	0.25	•
.900 - .875 - ear_fit <- 1 mary(linear_	0.10 .m(Grad ~ Ac fit)) ceptance, d	0.15 Acc lata = co	ceptance lleges)	0.20	0.25	•
.900 - .875 - ear_fit <- 1 mary(linear_	0.10 .m(Grad ~ Ac .fit)) ceptance, d	0.15 Acc lata = co	ceptance lleges)	0.20	0.25	
.900 - .875 - ear_fit <- 1 mary(linear_	0.10 .m(Grad ~ Ac .fit)) ceptance, d	0.15 Aco lata = co	ceptance lleges)	0.20	0.25	•

##

```
## Coefficients:
##
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.978086 0.008582 113.966 < 2e-16 ***
## Acceptance -0.291986 0.054748 -5.333 2.36e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01617 on 22 degrees of freedom
## Multiple R-squared: 0.5639, Adjusted R-squared: 0.544</pre>
```

```
## F-statistic: 28.44 on 1 and 22 DF, p-value: 2.36e-05
```

Residuals

• Residual = Observed Response - Predicted Response

1. The college highlighted in the figure above had an acceptance rate of 0.126, and a graduation rate of 0.96. Find the predicted graduation rate for colleges with acceptance rates of 0.126 and the residual for this college.

Find the predicted value:

0.978 - 0.292 * 0.126

[1] 0.941208

predict(linear_fit, newdata = data.frame(Acceptance = 0.126))

1 ## 0.9412959

Find the residual:

Model fit by least squares

- In general, smaller residuals are better (but not always to be discussed in more depth later?)
- Most common strategy for estimating β_0 and β_1 is by minimizing the Residual Sum of Squares:

$$\hat{\beta}_0$$
 and $\hat{\beta}_1$ minimize $\sum_{i=1}^n \{Y_i - (\beta_0 + \beta_1 X_i)\}^2$

• There are also other approaches (to be discussed later?)

Accessing the Residuals in R

<pre>colleges <- colleges %>% mutate(fitted = predict(linear_fit), residual = residuals(linear_fit))</pre>										
head(colleges)										
## #	A tib	ole: 6 x 7								
##	Tuitic	on Enrollment	Acceptance	Retention	Grad	fitted	residual			
##	<db]< td=""><td><pre>L> <dbl></dbl></pre></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td></td><td></td><td></td></db]<>	<pre>L> <dbl></dbl></pre>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>			
## 1	4017	70 8010	0.079	0.98	0.96	0.955	0.00498			
## 2	4229	92 19726	0.061	0.98	0.97	0.960	0.00972			
## 3	4400	00 11906	0.071	0.99	0.96	0.957	0.00264			
## 4	4913	38 23168	0.074	0.99	0.97	0.956	0.0135			
## 5	4324	18217	0.066	0.98	0.95	0.959	-0.00882			
## 6	4638	36 12508	0.132	0.99	0.92	0.940	-0.0195			
# Verifying the first residual calculation: observed response - fitted response 0.96 - 0.955										

[1] 0.005

We can then make plots (more next class):

• Question of the day: How far do the points tend to be from the line?

- Answer 1: $\pm 2 \times$ (Standard deviation of residuals) (quick and approximate)

- Answer 2: Prediction intervals (formal)

Answer 1: $\pm 2 \times$ Standard Deviation of Residuals (Approximate)

- Model: $Y_i \sim \text{Normal}(\beta_0 + \beta_1 X_i, \sigma)$
- Parameter σ (unknown!!) describes standard deviation of the normal distribution in the population
- Estimate it by

$$\hat{\sigma} = \sqrt{\frac{\text{Sum of Squared Residuals}}{n - (\text{number of parameters for the mean})}} = \sqrt{\frac{\sum_{i=1}^{n} \{Y_i - (\hat{\beta}_0 + \hat{\beta}_1 X_i)\}^2}{n - 2}}$$

- This is listed in the summary output as the "Residual standard error": 0.01617
- (this is reasonable terminology but not quite in agreement with our definition of standard error)

Here is the histogram of the residuals from the last page with a Normal (0, 0.01617) distribution overlaid:

- Fact 1: If a variable follows a normal distribution, about 95% of observations will fall within ± 2 standard deviations of the mean
- Fact 2: The mean of the residuals is 0

2. Based on the residual standard deviation, about how close are the observed responses to the fitted mean responses?

2 * 0.01617

[1] 0.03234

Prediction Intervals

Our Goal

- An interval that will contain the response y_0 for a new observation at a value x_0 of the explanatory variable
- Our best guess is the estimated mean $\hat{\mu}$
- The amount by which our guess is wrong is the residual for the new observation:

Observed Response - Estimated Mean

Two Contributions to Prediction Error

Observed Response - Estimated Mean = (Observed Response - Actual Mean) - (Estimated Mean - Actual Mean)

- 1. Variability of observed response around true population mean: σ , estimated by $\hat{\sigma} = \sqrt{\hat{\sigma}^2}$
- 2. Variability of estimated mean around true population mean: estimated by $SE(\hat{\mu}) = \sqrt{\hat{\sigma}^2 \frac{1}{n} + \hat{\sigma}^2 \frac{(x_0 \bar{x})^2}{(n-1)s_r^2}}$
- We put those two pieces together to get:

$$- SE(\hat{\mu} - y_0) = \sqrt{\hat{\sigma}^2 + \hat{\sigma}^2 \frac{1}{n} + \hat{\sigma}^2 \frac{(x_0 - \bar{x})^2}{(n-1)s_x^2}}$$

Prediction Intervals

- Prediction intervals for a new response are based on the error of the estimated mean from the response y for a new individual observation
 - $[\hat{\mu} t^* SE(\hat{\mu} y_0), \hat{\mu} + t^* SE(\hat{\mu} y_0)]$
 - For 95% of samples and 95% of new observations with the specified value of x, a CI calculated using this formula will contain the response for those new observations, $y_0 = \beta_0 + \beta_1 x_0 + \varepsilon_0$.

Compare to Confidence Intervals (from last class)

- Confidence intervals for the mean were based on the error of the estimated mean from the actual population mean $[\hat{\mu} t^*SE(\hat{\mu}), \hat{\mu} + t^*SE(\hat{\mu})]$ where
 - For 95% of samples, a CI calculated using this formula will contain the population mean response at x_0 , $\mu = \beta_0 + \beta_1 x_0$

3. Find and interpret a 95% prediction interval for the graduation rate of a college that was not in our data set before, and has an acceptance rate of 0.1.

```
predict_df <- data.frame(</pre>
  Acceptance = 0.1
)
predict(linear_fit, newdata = predict_df, interval = "prediction", se.fit = TRUE)
## $fit
##
           fit
                      lwr
                              upr
## 1 0.9488876 0.9142951 0.98348
##
## $se.fit
## [1] 0.004108595
##
## $df
## [1] 22
##
## $residual.scale
## [1] 0.01616618
```

Compare to a confidence interval for the mean:

predict(linear_fit, newdata = predict_df, interval = "confidence", se.fit = TRUE)

\$fit
fit lwr upr
1 0.9488876 0.9403669 0.9574083
##
\$se.fit
[1] 0.004108595
##
\$df
[1] 22
##
\$residual.scale
[1] 0.01616618

No easy way to get Scheffe adjusted simultaneous intervals, but we can plot the individual prediction intervals at each value of x in our data set as follows:

intervals <- predict(linear_fit, interval = "prediction") %>%
 as.data.frame()

Warning in predict.lm(linear_fit, interval = "prediction"): predictions on current data refer to _future_

head(intervals)

 ##
 fit
 lwr
 upr

 ##
 1
 0.9550193
 0.9199975
 0.9900411

 ##
 2
 0.9602750
 0.9247617
 0.9957884

 ##
 3
 0.9573552
 0.9221287
 0.9925817

 ##
 4
 0.9564792
 0.9213321
 0.9916263

 ##
 5
 0.9588151
 0.9234494
 0.9941808

 ##
 6
 0.9395440
 0.9052956
 0.9737924

colleges <- colleges %>%
 bind_cols(

intervals

head(colleges)

A tibble: 6 x 10

##		Tuition	Enrollment	Acceptance	Retention	Grad	fitted	residual	fit	lwr	upr
##		<dbl></dbl>									
##	1	40170	8010	0.079	0.98	0.96	0.955	0.00498	0.955	0.920	0.990
##	2	42292	19726	0.061	0.98	0.97	0.960	0.00972	0.960	0.925	0.996
##	3	44000	11906	0.071	0.99	0.96	0.957	0.00264	0.957	0.922	0.993
##	4	49138	23168	0.074	0.99	0.97	0.956	0.0135	0.956	0.921	0.992
##	5	43245	18217	0.066	0.98	0.95	0.959	-0.00882	0.959	0.923	0.994
##	6	46386	12508	0.132	0.99	0.92	0.940	-0.0195	0.940	0.905	0.974

ggplot(data = colleges, mapping = aes(x = Acceptance, y = Grad)) +

geom_point() +
geom_smooth(method = "lm") +
geom_line(mapping = aes(y = lwr), linetype = 2) +
geom_line(mapping = aes(y = upr), linetype = 2) +
theme_bw()

