"Simple" Linear Regression

20191004 – Sleuth 3 Chapter 7

Example

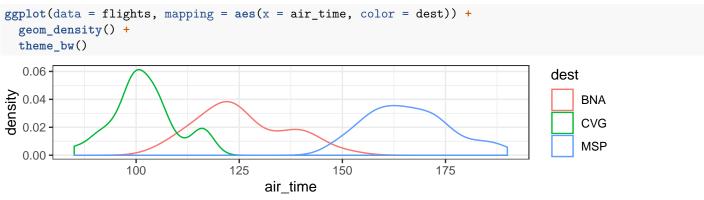
We have a data set with information about 152 flights by Endeavour Airlines that departed from JFK airport in New York to either Nashville (BNA), Cincinnati (CVG), or Minneapolis-Saint Paul (MSP) in January 2012.

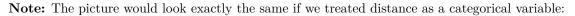
head(flights, 4)

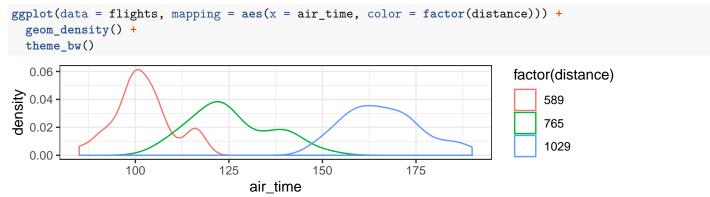
##	#	A tibble:	: 4 x 3	
##		distance	air_time	dest
##		<dbl></dbl>	<dbl></dbl>	<chr></chr>
##	1	1029	189	MSP
##	2	765	150	BNA
##	3	1029	173	MSP
##	4	589	118	CVG

So Far: ANOVA Model

- Observations in group i follow a Normal (μ_i, σ^2) distribution
- Observations are independent of each other



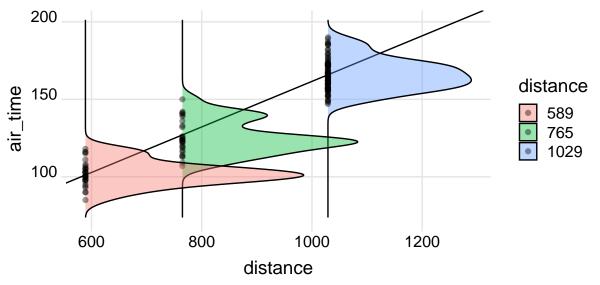




Old idea: Each group has a normal distribution with its own mean

• Categorical explanatory variable

New idea: Each group has a normal distribution with a mean that is a linear function of distance



• Quantitative (numeric) explanatory variable

The simple linear regression is exactly like the ANOVA model, with the one new restriction that the means fall along a line.

Two ways to write the model:

Focusing on the mean (book)

Values of the response variable are independent and normally distributed with mean $\mu(Y|X) = \beta_0 + \beta_1 X$

- Read as "The mean of Y for a given value of X"
- In our example, Y is air time and X is distance.

Written for a single observation, number i (my preference)

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

$$\varepsilon_i \sim \text{Normal}(0, \sigma^2)$$

• In our example, Y_i is the air time for flight number *i* and x_i is the distance for flight number *i*.

Parameter interpretations

- β_0 is intercept for the population: mean value of the response when X = 0, in the population
- β_1 is slope for the population: change in mean response when X increases by 1 unit, in the population.
- β_0 and β_1 are unknown population parameters. We estimate them with the intercept and slope of a line describing our sample.

Conditions: spells "LINE-O"

Exactly the same as conditions for ANOVA, with addition that the mean of the response is a linear function of the explanatory variale:

- Linear relationship between explanatory and response variables
- **Independent** observations (knowing that one observation is above its mean wouldn't give you any information about whether or not another observation is above its mean)
- Normal distribution
- Equal standard deviation of response for all values of X Denote this standard deviation by σ
- no Outliers (not a formal part of the model, but important to check in practice)