Concepts: Transformations for ANOVA models

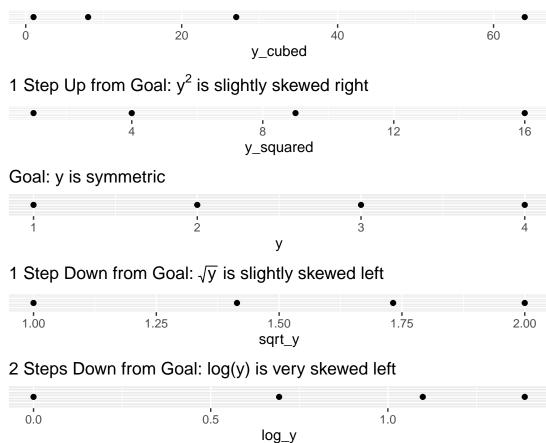
20190930- Sleuth3 Sections 3.5 and 5.5

Context

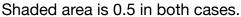
- Transformations can sometimes help with the following issues:
 - non-normal distributions within each group (but skewness is only a problem if it is very serious)
 - $-\,$ lack of equal variance for all groups
 - outliers (but usually only if this is a side effect of serious skewness)
- The most common transformations (that we'll consider in this class) work for positive numbers only.

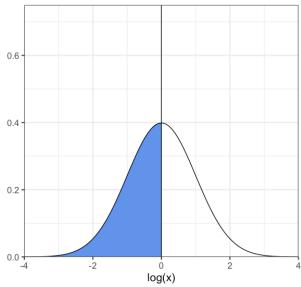
The Ladder of Powers

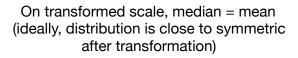
• Imagine a "ladder of powers" of y (or x): We start at y and go up or down the ladder.

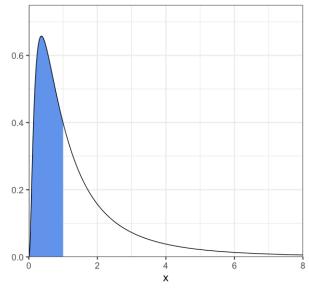

Transformation	R Code	Comments
÷		
e^y	exp(y)	Exactly where on the ladder the exponential trans- formation belongs depends on the magnitude of the data, but somewhere around here
y^2	y^2	
\overline{y}		Start here (no transformation)
\sqrt{y}	sqrt(y)	
$y^{"0"}$	log(y)	We use $\log(y)$ here
$-1/\sqrt{y}$	-1/sqrt(y)	The $-$ keeps the values of y in order
-1/y	-1/y	
$-1/y^2$	-1/y^2	
:		

Some (minimal) facts about logarithms and exponentials


- Foundations:
 - In this class the base of our logarithms is e
 - Notation: $\exp(x) = e^x$
- $\log()$ and $\exp()$ are inverses
 - $-\log(\exp(x)) = x$
 - $-\exp(\log(x)) = x$
- They are useful because they convert multiplication to addition, and addition to multiplication
 - $-\log(a \cdot b) = \log(a) + \log(b)$
 - $-\exp(a+b) = \exp(a) \cdot \exp(b)$


- Which direction?
 - If a variable is skewed right, move it down the ladder (pull down large values)
 - If a variable is skewed left, move it up the ladder (pull up small values)


2 Steps Up from Goal: y³ is very skewed right


Interpretation of a single mean on the original scale (valid for all transformations, illustrated with log here)

Example: on log scale, median is 0

Median on original scale is exponential transformation of median on log scale.

Example: on original scale, median is $e^0 = 1$

Interpretation of a difference between means on the original scale (valid for log transformation only!)

 $exp\{\text{Mean Group 2 on log scale} - \text{Mean Group 1 on log scale}\} \\
= exp\{\log(\text{Median group 2}) - \log(\text{Median group 1})\} \\
= exp\left\{ \log\left(\frac{\text{Median group 2}}{\text{Median group 1}}\right) \right\} \\
= \frac{\text{Median group 2}}{\text{Median group 1}}$

Rearranging, we obtain:

Median group 2 = Median group 1 $\times exp(Mean Group 2 on \log scale - Mean Group 1 on \log scale)$

Equivalently, ...

Median group 1 = Median group $2 \times exp(Mean Group 1 on \log scale - Mean Group 2 on \log scale)$