Degrees of Freedom for Tests about a Single Mean

Population Variance
e The variance the average squared difference from the mean.
o Imagine a population of N people, each has a height Y;
« Mean height is p = +; ZZ]\LI Y;

 Variance of heights is 02 = % Zil(Yz — p)?
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o Both distributions have mean 0

e The distribution shown in orange has larger variance than the distribution shown in black
— A typical value is farther from 0
— A typical value has larger squared distance from 0
— Across all values, the average squared difference from 0 is larger

Sample Variance

2

2 is used as an estimate of the population variance o2.

e The sample variance s

e Suppose we tried to use
~ 1 %,
5 = n Y (Yi—Y)?

e Doesn’t work because:
— Values in sample tend to be a little closer to Y than to u
— Squared differences from Y are a little smaller than squared differences from
— 52 tends to be less than o2

e Dividing by n — 1 instead of n is just the right adjustment:

s? = ﬁ > i (Yi— Y)?



Demonstration by simulation
« “Population”: Normal(0, 1) Variance is 02 = 1
e Sample of size n =4

In black: Population distribution, population mean
In orange: Sample observations, sample mean
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Here’s our data frame with sample data:

sample_df

## X
## 1 1.44521048
## 2 0.63852357
## 3 0.04167507
## 4 -0.62136233

Sample mean is:
sample_df %>%
summarize (
mean = mean(x)

)

## mean
## 1 0.3760117

Average squared difference from population mean of 0O:

sample_df %>7
summarize (
mean_squared_difference_from_0 = mean((x - 0)72)

)

## mean_squared_difference_from_O
#it 1 0.7210434

Average squared difference from sample mean of 0.376:
sample_df %>7
summarize (
mean_squared_difference_from_0 = mean((x - 0.376)°2)

)

## mean_squared_difference_from_O
## 1 0.5796586

Corrected by dividing by n — 1 instead of n:

sample_df %>%
summarize (
almost_mean_squared_difference_from_0 = sum((x - 0.376)72) / (4 - 1)

)

## almost_mean_squared_difference_from_O
#it 1 0.7728781

e For this particular sample, all three are below the population variance of 1. What about across 10000 samples?



Black line: population variance
Orange line: average estimate of population variance across 10000
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Connection to ¢ tests

e Our t statistic for a test about the value of a mean p is

t— Y-p _ Y—pu

T SE(Y) ~ s/vn

e s shows up in this calculation, with associated degrees of freedom n — 1.

What if we had more than one mean (e.g. two or three groups)?

The degrees of freedom is always the sample size minus the number of parameters for the mean.
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