R Commands for Inference for Proportions

Suppose we take a sample of size $n=40$ and our null hypothesis is $H_{0}: p=0.2$
If the null hypothesis is true and conditions check out, our sampling distribution is $X \sim \operatorname{Binomial}(40,0.2)$

There are 3 options for what H_{A} could be:
Option 1: $H_{A}: p>0.2$ (do not use this confidence interval)
Suppose that we observe $x=14$. The p-value is $P(X \geq 14)=P(X>13)$.

```
pbinom(q = 14 - 1, size = 40, prob = 0.2, lower.tail = FALSE)
```

\#\# [1] 0.01940737
binom.test(x = 14, $\mathrm{n}=40, \mathrm{p}=0.2$, alternative = "greater")
\#\# data: 14 out of 40
\#\# number of successes $=14$, number of trials $=40, p$-value $=0.01941$
\#\# alternative hypothesis: true probability of success is greater than 0.2

\#\# 95 percent confidence interval:
\#\# 0.22553251 .0000000

\#\# sample estimates:
\#\# probability of success
\#\# 0.35
This is the sample proportion: 14/40

Option 2: $H_{A}: p<0.2$ (do not use this confidence interval)
Suppose that we observe $x=6$. The p -value is $P(X \leq 6)$.
pbinom(q $=6$, size $=40$, prob $=0.2$)
\#\# [1] 0.2858914
binom.test($\mathrm{x}=6, \mathrm{n}=40, \mathrm{p}=0.2$, alternative $=$ "less")
\#\# data: 6 out of 40
\#\# number of successes $=6$, number of trials $=40, p$-value $=0.2859$
\#\# alternative hypothesis: true probability of success is less than 0.2
\#\# 95 percent confidence interval:
\#\# 0.00000000 .2747445
Ignore this: we will not use 1-sided confidence intervals
\#\# sample estimates:
\#\# probability of success
\#\# 0.15
This is the sample proportion: 6/40

Option 3: $p \neq 0.2$, Confidence Interval

Suppose we observe $x=14$. The p-value is the probability of getting a test statistic at least as far from the expected result if the null hypothesis was true. We will only use the binom.test function for p -value calculations in this case.

```
binom.test(x = 14, n = 40, p = 0.2, alternative = "two.sided",
    conf.level = 0.95)
```

\#\# data: 14 out of 40
\#\# number of successes $=14$, number of trials $=40, p$-value $=0.02735$
\#\# alternative hypothesis: true probability of success is not equal to 0.2
\#\# 95 percent confidence interval:
\#\# 0.20628250 .5168445 We will use this confidence interval!
\#\# sample estimates:
\#\# probability of success
\#\# 0.35

