
Linear Regression Lab Wrap-Up

Evan L. Ray November 12, 2018

Question

Is there increasing severity of wildfires, as measured by average number of acres burned per fire?

Interpretation of Slope

lm_fit <- lm(ave_acres_burned ~ years_since_1985, data = wildfires)
coef(lm_fit)</pre>

(Intercept) years_since_1985
19.616453 2.221771

• For each additional year since 1985, the predicted number of acres burned increases by 2.22 acres.

lm_fit_year <- lm(ave_acres_burned ~ year, data = wildfires)
coef(lm_fit_year)</pre>

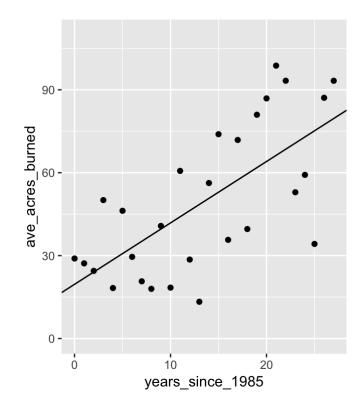
(Intercept) year ## -4390.598311 2.221771

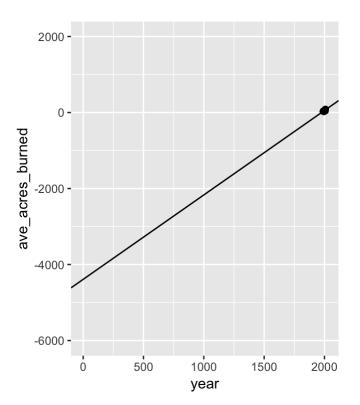
• For each additional year, the predicted number of acres burned increases by 2.22 acres.

Interpretation of Intercept

lm_fit <- lm(ave_acres_burned ~ years_since_1985, data = wildfires)
coef(lm_fit)</pre>

(Intercept) years_since_1985
19.616453 2.221771


• Predicted average number of acres burned in 1985 is 19.6


lm_fit_year <- lm(ave_acres_burned ~ year, data = wildfires)
coef(lm_fit_year)</pre>

(Intercept) year ## -4390.598311 2.221771

• Predicted average number of acres burned in year 0 is -4390

What's going on?

Never Extrapolate Beyond the Data

An Important Message