Motivation: How Useful Is A Model?

We have a data set with observations of four variables measuring advertising budgets and sales for a product in each of 200 markets:

- sales is a measure of sales volume in thousands of units
- TV is TV advertising budget
- radio is radio advertising budget
- newspaper is newspaper advertising budget

Below is R code for making plots displaying three separate simple linear regression fits to the data (the actual plots are on the other side of the page). In all three plots/models, sales is the response variable; the explanatory variable is different for each model.

```
library(readr)
library(ggplot2)
library(gridExtra) # for grid.arrange, puts plots next to each other
Advertising <- read_csv("http://www.evanlray.com/data/islr/Advertising.csv")
p1 <- ggplot(data = Advertising, mapping = aes(x = TV, y = sales)) +
    geom_point() +
    geom_smooth(method = "lm", se = FALSE) +
    theme_bw(base_size = 14)
p2 <- ggplot(data = Advertising, mapping = aes(x = radio, y = sales)) +
    geom_point() +
    geom_smooth(method = "lm", se = FALSE) +
    theme_bw(base_size = 14)
p3 <- ggplot(data = Advertising, mapping = aes(x = newspaper, y = sales)) +
    geom_point() +
    geom_smooth(method = "lm", se = FALSE) +
    theme_bw(base_size = 14)
grid.arrange(p1, p2, p3, nrow = 1)
```


With your neighbors, discuss which of these models would you prefer to use for predicting sales and why. Then answer the questions below:

Being as specific and concrete as possible, write down a rule for selecting your preferred model based only on visual characteristics of the plot. (That is, your rule should not involve any calculations of numeric quantities).

Being as specific and concrete as possible, write down a rule for selecting your preferred model based only on a quantitative summary of the data. You can describe how you would calculate your numeric summary of the data in a general sense; if you'd like you can write down a formula.

