
Confidence Intervals for Population Means
Reminder of Notation: ȳ is the sample mean, s is the sample standard deviation, n
is the sample size

Goal: A (1− α)× 100 % confidence interval for µ.

Example: α = 0.05⇔ 95% confidence interval.

Interval: ȳ ± t∗SE(ȳ)

SE(ȳ) = s√
n
is the standard error (estimated standard deviation) of ȳ

y − t*s n y y + t*s n

• The margin of error is t∗SE(ȳ): the amount we add and subtract from ȳ.
• t∗ is the (1− α

2 ) quantile of the tn−1 distribution. Examples:
– α = 0.05⇔ 95% CI ⇔ t∗ = 0.975th Quantile of tn−1 distribution.
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Total area to left of t* is 0.975

Example with α = 0.05 (95% CI)

In R, to look up t∗:
qt(0.975, df = 10) # For a 95% CI, sample size is n = 11

## [1] 2.228139

Important things:

• For a 95% CI, the first argument to qt is 0.975, not 0.95!
• The second argument to qt is n− 1!
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This example was presented in Rice (2007):

To study the effect of cigarette smoking on platelet aggregation, Levine
(1973) drew blood samples from 11 individuals before and after they smoked
a cigarette and measured the extent to which the blood platelets aggregated.
Platelets are involved in the formation of blood clots, and it is known that
smokers suffer more often from disorders involving blood clots than do
nonsmokers. The data are shown in the following table, which gives the
maximum percentage of all the platelets that aggregated afer being exposed
to a stimulus.

head(platelets)

## # A tibble: 6 x 2
## before after
## <int> <int>
## 1 25 27
## 2 25 29
## 3 27 37
## 4 44 56
## 5 30 46
## 6 67 82

This is an example of paired data:

• We have two measurements on each person (these are not independent!)
• We are interested in the difference between these measurements
• These differences are independent across different people

platelets <- platelets %>%
mutate(difference = after - before)

head(platelets)

## # A tibble: 6 x 3
## before after difference
## <int> <int> <int>
## 1 25 27 2
## 2 25 29 4
## 3 27 37 10
## 4 44 56 12
## 5 30 46 16
## 6 67 82 15

2



(a) What is the population parameter of interest?

(b) Check the conditions for inference with these data
ggplot(data = platelets, mapping = aes(x = difference)) +

geom_density()
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ggplot(data = platelets, mapping = aes(x = difference)) +
geom_histogram()

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
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platelets %>%
summarize(

mean_diff = mean(difference),
median_diff = median(difference)

)

## # A tibble: 1 x 2
## mean_diff median_diff
## <dbl> <int>
## 1 10.272727 10
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(c) Find a 95% confidence interval for the population parameter, and verify
that it agrees with the output from t.test.

nrow(platelets)

## [1] 11
platelets %>%

summarize(
mean_difference = mean(difference),
sd_difference = sd(difference))

## # A tibble: 1 x 2
## mean_difference sd_difference
## <dbl> <dbl>
## 1 10.272727 7.9761007
qt(0.975, df = 11 - 1)

## [1] 2.228139
10.27273 - 2.228139 * 7.976101 / sqrt(11)

## [1] 4.914312
10.27273 + 2.228139 * 7.976101 / sqrt(11)

## [1] 15.63115
t.test(~ difference, conf.level = 0.95, alternative = "two.sided",

data = platelets)

##
## One Sample t-test
##
## data: difference
## t = 4.2716, df = 10, p-value = 0.001633
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 4.91431 15.63114
## sample estimates:
## mean of x
## 10.27273
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(d) How much did that potential outlier affect our inference?

• Definition (from Wikipedia): “an influential observation is an observation for
a statistical calculation whose deletion from the dataset would noticeably change
the result of the calculation.”

Let’s find out what happens if we remove the outlier.
platelets_no_outlier <- platelets %>% filter(difference < 20)

t.test(~ difference, conf.level = 0.95, alternative = "two.sided",
data = platelets_no_outlier)

##
## One Sample t-test
##
## data: difference
## t = 4.5021, df = 9, p-value = 0.001484
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 4.278813 12.921187
## sample estimates:
## mean of x
## 8.6

• How much does the confidence interval change when that observation is removed?

• Does the conclusion of the analysis change when that observation is removed?

Note:

• I am not removing the outlier from the analysis.
• I am checking to see how sensitive my conclusions are to that one data point.
• If anything, I would discuss results from both tests (e.g., “there was one mild

outlier in the data set, but the substantive conclusion of the analysis was the
same whether or not that outlier was included.”)
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(e) Find a 99% confidence interval for the population parameter, and verify
that it agrees with the output from t.test.

nrow(platelets)

## [1] 11
platelets %>%

summarize(
mean_difference = mean(difference),
sd_difference = sd(difference))

## # A tibble: 1 x 2
## mean_difference sd_difference
## <dbl> <dbl>
## 1 10.272727 7.9761007
qt(0.995, df = 11 - 1)

## [1] 3.169273
10.27273 - 3.169273 * 7.976101 / sqrt(11)

## [1] 2.650993
10.27273 + 3.169273 * 7.976101 / sqrt(11)

## [1] 17.89447
t.test(~ difference, conf.level = 0.99, alternative = "two.sided",

data = platelets)

##
## One Sample t-test
##
## data: difference
## t = 4.2716, df = 10, p-value = 0.001633
## alternative hypothesis: true mean is not equal to 0
## 99 percent confidence interval:
## 2.650991 17.894463
## sample estimates:
## mean of x
## 10.27273
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