The Normal Distribution (Chapter 5)

Two examples (black: observed sample data; red: a normal model with the same mean and standard deviation)

Car speeds in a 20 MPH zone

Prices of plain pizza slices in Dallas, TX

Let the random variable X be the numeric value of one of these variables for a randomly sampled item from the population

- Example: X is the speed of a randomly selected car in a 20 MPH speed zone.
- Example: X is the price of a piece of cheese pizza from a randomly selected restaurant in Dallas, TX.

We could model the value of X as being a draw from a normal distribution

- $X \sim \operatorname{Normal}(\mu, \sigma)$
- Read: X follows a normal distribution with mean μ ("mew", like a cat) and standard deviation σ ("sigma")
- μ and σ determine the center and spread of the distribution

Here are pictures of normal models for car speeds and pizza prices:
Normal(23.84, 3.56) Model for Car Speeds

Normal(2.62, 0.16) Model for Pizza Prices

- Area under the curve is the probability of getting an observation in that region
- For any normal distribution,
- 68% of observations are within $\mu \pm \sigma$ (orange area is about 0.68)
- 95% of observations are within $\mu \pm 2 \sigma$ (sum of orange and blue areas is about 0.95)
- Total area under the curve is 1 (all observations have some value of x).

z-scores

For calculating probabilities, what matters is how many standard deviations away from the mean a particular number x is.

This is the z-score of $x: z=\frac{x-\mu}{\sigma}$
Note: If $X \sim \operatorname{Normal}(\mu, \sigma)$, then $Z \sim \operatorname{Normal}(0,1)$

Example: Suppose X is the speed of a randomly selected car in a 20 MPH zone, and the distribution of speeds of such cars is $\operatorname{Normal}(23.84,3.56)$. How many standard deviations above or below the mean is a car driving 27.4 miles per hour?

Probability calculations in R

The pnorm function calculates probabilities involving the normal distribution.
We will provide the z-score as an argument to pnorm.

Example: What is the probability that a randomly selected car will be driving less than 27.4 miles per hour, assuming that car speeds follow a Normal(23.84, 3.56) distribution?

The number I provided to pnorm below is the z-score of 27.4.
pnorm(1)
\#\# [1] 0.8413447

Example: What is the probability that a randomly selected car will be driving more than 27.4 miles per hour, assuming that car speeds follow a Normal $(23.84,3.56)$ distribution?

The number I provided to pnorm below is the z-score of 27.4 .
pnorm(1, lower.tail = FALSE)
\#\# [1] 0.1586553

Example: What is the probability that a randomly selected car will be driving exactly 27.4 miles per hour, assuming that car speeds follow a Normal(23.84, 3.56) distribution?

There is space to do calculations for the following examples in Lab 12 on Gryd.

Example: Suppose that the price of a slice of cheese pizza from a randomly selected restaurant in Dallas, TX follows a Normal(2.62, 0.16) distribution. Find the probability that a slice of pizza from a randomly selected restaurant costs less than $\$ 2.25$.

Example: Suppose that the price of a slice of cheese pizza from a randomly selected restaurant in Dallas, TX follows a Normal(2.62, 0.16) distribution. Find the probability that a slice of pizza from a randomly selected restaurant costs more than $\$ 3.00$.

