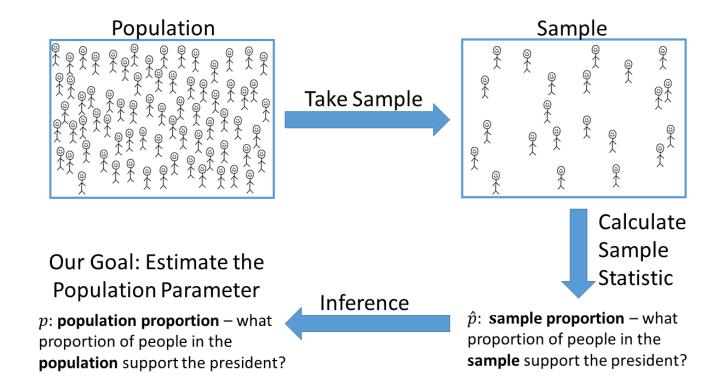
### Sampling: Summary

#### The Course So Far: Describe Observations in a Sample


| Variable<br>Type(s)              | Plot                        | Numeric Summary                                                                            |
|----------------------------------|-----------------------------|--------------------------------------------------------------------------------------------|
| 1 Categorical                    | Bar                         | (Marginal) distribution                                                                    |
| 2 Categorical                    | Bar                         | Joint Distribution, Conditional Distribution                                               |
| 1 Quantitative                   | Histogram or<br>Density     | mean, median, quantiles, standard deviation, variance, IQR                                 |
| 1 Categorical, 1<br>Quantitative | Density Plot<br>or Box Plot | summary statistics of the quantitative variable for each level of the categorical variable |
| 2 Quantitative                   | Scatter Plot                | correlation                                                                                |

## From Now On: Use Observations in a Sample to Estimate Something about a Population

Population Parameter: a number summarizing a variable across the whole population

Sample Statistic: a number summarizing a variable for the sample

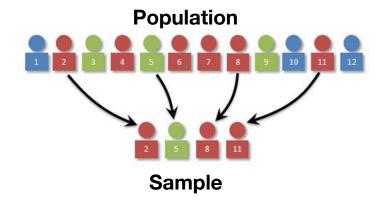
Our Hope: The sample statistic will be a good estimate of the population parameter.



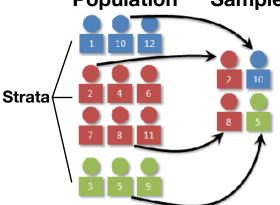
#### How Do We Get Our Sample?

#### **Simple Random Sample**

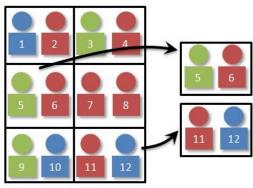
Population Sample


1 2 3 4

2 5


5 6 7 8

9 10 11 12


Systematic Sample (every 3rd)



Stratified Sample
Population Sample



# Cluster Sample Population Sample



#### Bias

- For the sample statistic to be a good estimate of the population parameter, the sample needs to be **representative** of the population.
- Definition: Sampling methods that tend to over-emphasize or under-emphasize some characteristics of the population are **biased**.
- Common sources of bias:
  - Sample Volunteers/Convenience Sampling: just include people in the sample who are easy to recruit
  - Bad Sampling Frame/Undercoverage: only choose your sample from among a subset of the population
  - **Nonresponse**: some people selected for your sample choose not to respond
  - $\bf Response\ bias:$  your phrasing or survey design encourages people to answer a certain way

#### Sampling Variabilty

- Every sample you take is different!
- Imagine taking 10 different samples of people in the US
- Each group of people you select will have different numbers who support the president
- So each sample will have a different sample statistic (different proportion of the sample who support the president).
- Definition: The **sampling distribution** is the distribution of values of the sample statistic that you would get from all possible samples of a given size. (We will explore this more in the lab today and in Chapter 17.)