R Commands for Quantitative Variables

September 17, 2018

Birth Weights and Tobacco Use During Pregnancy

Are babies' birth weights affected by whether or not the mother used tobacco during pregnancy? Low birth weights are a risk factor for health problems later in life, so this is important!

Here is a data set with data on a sample of randomly selected babies who were born in North Carolina in 2004, with some information about the mother and the babies' weights in grams:

```
dim(NCBirths2004)
```

[1] 1009 7

```
head(NCBirths2004)
```

##		ID	MothersAge	Tobacco	Alcohol	Gender	Weight	Gestation
##	1	1	30-34	No	No	Male	3827	40
##	2	2	30-34	No	No	Male	3629	38
##	3	3	35-39	No	No	Female	3062	37
##	4	4	20-24	No	No	Female	3430	39
##	5	5	25-29	No	No	Male	3827	38
##	6	6	35-39	No	No	Female	3119	39

Here's a plot of the data:

Warm Up #1: What did the code to make that plot look like? Fill in the blanks below.

There are 4 blanks: what was used for data? For the aesthetic mapping to x? For the aesthetic mapping to color? For the geometry?

```
ggplot(data = ,
    mapping = aes(x = , color = )) +
    geom_ ()
```

Warm Up #2: What statistics would you use to summarize the center and spread of the distribution of birth weights within each group?

Calculating Summaries of Quantitative Variables: summarize and group_by

We saw from the plot that there seems to be a difference in birth weights. What are "typical" birth weights for the two groups?

```
NCBirths2004 %>%
 group_by(Tobacco) %>%
  summarize(
   mean wt = mean(Weight),
   median wt = median(Weight),
   q1 wt = quantile(Weight, probs = 0.25),
   q3 wt = quantile(Weight, probs = 0.75),
   iqr wt = IQR(Weight),
   var wt = var(Weight),
   sd wt = sd(Weight)
  )
## # A tibble: 2 x 8
##
     Tobacco mean_wt median_wt q1_wt q3_wt iqr_wt var_wt sd_wt
     <fct>
              <dbl>
                         <dbl> <dbl> <dbl>
                                            <dbl>
                                                    <dbl> <dbl>
##
## 1 No
              3472.
                          3459 3147 3771
                                             624 229012. 479.
## 2 Yes
              3257.
                          3204 2948 3530.
                                             582. 270898.
```

Note: if we wanted to just calculate these summaries for all babies combined (across both groups), we would eliminate the group_by command:

520.

```
NCBirths2004 %>%
  summarize(
   mean wt = mean(Weight),
   median wt = median(Weight),
    q1 wt = quantile(Weight, probs = 0.25),
   q3_wt = quantile(Weight, probs = 0.75),
    iqr wt = IQR(Weight),
   var wt = var(Weight),
   sd wt = sd(Weight)
  )
```

mean_wt median_wt q1_wt q3_wt iqr_wt var wt sd wt ## 1 3448.26 3430 3119 3771 652 237886.4 487.736

Sorting the data: arrange

What was the shortest gestation time?

To answer this question, we will **arrange** the babies in increasing order of gestation time. Then, the babies with the shortest gestation times will be near the **head** of the data frame.

```
NCBirths_by_gestation <- NCBirths2004 %>%
arrange(Gestation)
```

```
head(NCBirths_by_gestation)
```

##		ID	MothersAge	Tobacco	Alcohol	Gender	Weight	Gestation
##	1	3	35-39	No	No	Female	3062	37
##	2	15	30-34	No	No	Male	3232	37
##	3	20	25-29	No	No	Male	3005	37
##	4	29	15-19	No	No	Female	2863	37
##	5	31	20-24	No	No	Male	2155	37
##	6	32	20-24	Yes	No	Female	3062	37

What was the longest gestation time?

Now we want to **arrange** the babies in **desc**ending order of gestation time, so the longest gestation times will be at the **head** of the data frame:

```
NCBirths_by_gestation_descending <- NCBirths2004 %>%
arrange(desc(Gestation))
```

head(NCBirths_by_gestation_descending)

##		ID	MothersAge	Tobacco	Alcohol	Gender	Weight	Gestation
##	1	79	30-34	No	No	Male	4139	42
##	2	165	20-24	No	No	Male	3799	42
##	3	359	20-24	No	No	Female	4224	42
##	4	384	30-34	No	No	Female	3572	42
##	5	521	20-24	No	No	Female	3430	42
##	6	585	35-39	No	No	Female	3629	42

Modifying or Adding a Variable: mutate

The babies' birth Weights are currently recorded in grams. Let's add a new variable to the data frame called Weight_lbs with the babies' birth weights in pounds.

There are about 453.6 grams in a pound. We can divide the weight in grams by 453.6 to get the weight in pounds.

```
NCBirths2004 <- NCBirths2004 %>%
mutate(
    Weight_lbs = Weight / 453.6
)
```

As usual, we can take a look at the results by looking at the output from head or str. head(NCBirths2004)

##		ID	MothersAge	Tobacco	Alcohol	Gender	Weight	Gestation	Weight_lbs
##	1	1	30-34	No	No	Male	3827	40	8.436949
##	2	2	30-34	No	No	Male	3629	38	8.000441
##	3	3	35-39	No	No	Female	3062	37	6.750441
##	4	4	20-24	No	No	Female	3430	39	7.561728
##	5	5	25-29	No	No	Male	3827	38	8.436949
##	6	6	35-39	No	No	Female	3119	39	6.876102