Data Visualizations

September 14, 2018

Warm Up

I have loaded a data set called senate_113 with information about the senators in the 113th US Senate (this is the senate that came into session in January 2013)

Here's a first look at the data set:

```
dim(senate_113)
```

```
## [1] 100 7
head(senate_113)
```

\#\# \# A tibble: 6×7							
\#\#	firstname	middlename	lastname	birthday	state party	age	
\#\#	<chr>	<chr>	<chr>	<date>	<chr>	<chr>	<dbl>
\#\# 1	Dianne	<NA>	Feinstein	1933-06-22	CA	D	79.5
\#\# 2	Charles	E.	Grassley	$1933-09-17$	IA	R	79.3
\#\# 3	Orrin	G.	Hatch	$1934-03-22$	UT	R	78.8
\#\# 4 Richard	C.	Shelby	$1934-05-06$	AL	R	78.7	
\#\# 5	Carl	<NA>	Levin	$1934-06-28$	MI	D	78.5
\#\# 6	James	M.	Inhofe	$1934-11-17$	OK	R	78.1

1. How many observational units are in the data set? What is each observational unit?
2. What are the variables in the data set? What type of variable is each?

Histograms

Histograms are a common type of plot for displaying a quantitative variable. The horizontal axis is divided into bins of equal width, and the height of each bar represents the number of units in that bin. There are two common types of histograms, where the vertical axis means different things:

1. count: The height of each bar is the number of observational units in that bin.
2. density: The area of each bar is the proportion of observational units in that bin. (The height is whatever it needs to be to make the area work out correctly).
3. Here is a histogram where the vertical axis is a count. Based on this plot, how many senators were aged between 40 and 50 ?
ggplot(data $=$ senate_113, mapping $=$ aes $(x=a g e))+$ geom_histogram(binwidth = 5, boundary = 40)

4. Here is a histogram where the vertical axis is density. Based on this plot, approximately what proportion of senators were between 55 and 60 ?

In this plot, each bin has width 5 . Remember that the formula for area is width \times height. ggplot(data = senate_113, mapping = aes(x = age, y = ..density..)) + geom_histogram(binwidth = 5, boundary = 40)

I will never again ask you to actually calculate a proportion like this, but it is important to know how you would, conceptually.

Density Plots

A density plot is basically a smoothed density histogram.
ggplot(data $=$ senate_113, mapping $=$ aes $(x=$ age $))+$ geom_density()

5. What would the area under the curve between 40 and 50 tell you?

As with the density histogram, we won't actually calculate the area under a density curve to answer questions like this - but, we will need to know what the area corresponds to.

Describing the Shape

When I look at a histogram or density plot, I'm evaluating three characteristics of the plot:

A. Unimodal or Multimodal?

A mode is a local peak in the distribution.

Multimodal

B. Symmetric or skewed?

If a distribution is skewed, it's skewed towards the tail.

C. Are there any gaps or outliers?

An outlier is a data value that "doesn't fit" with the rest of the data.

Outlier

6. Describe each of the following distributions; for each, discuss whether it is unimodal or multimodal, symmetric or skewed, and whether there are any outliers.

I've taken these examples from the Bechdel Test data. In the first example, look carefully at the histogram!
ggplot(data = movies, mapping = aes(x = budget_2013)) + geom_histogram(bins = 100)

ggplot(data $=$ movies, mapping $=$ aes(x = imdb_rating)) + geom_density()

Box Plots

A box plot is a graphical representation of the 5 number summary of a data set:

1. The maximum
2. The 75 th percentile (the number such that 75% of the data are less than that value, and 25% are greater than that value). Also called the third quartile.
3. The median (the number such that half of the data are less than that value and half are greater than that value)
4. The 25 th percentile (the number such that 25% of the data are less than that value, and 75% are greater than that value). Also called the first quartile.
5. The minimum

- The difference between the 75 th percentile and the 25 th percentile is called the Interquartile range (IQR). It is the width of an interval containing the middle half of the data.
- Observations more than 1.5 IQR's away from the box are "outliers" (according to the rules for drawing a boxplot)

Let's go back to looking at the ages of members of the US Senate.

```
ggplot(data = senate_113, mapping = aes(y = age, x = party)) +
    geom_boxplot()
```


Here are some questions you should be able to answer based on the box plots above:
7. Which party had the highest median age?
8. The youngest member of the senate belonged to which party?
9. 75% of Republican senators were younger than what age?
10. How wide of an interval would you need to cover the ages of the middle half of Democratic senators?

